Определение 1 (на «языке последовательностей», или по Гейне).
16. ПРЕДЕЛ ФУНКЦИИ
16.1. Предел функции в точке
Пусть функция у=ƒ (х) определена в некоторой окрестности точки хо, кроме, быть может, самой точки хо.
Сформулируем два, эквивалентных между собой, определения предела функции в точке.
Определение 1 (на «языке последовательностей», или по Гейне).
Число А называется пределом функции у=ƒ(х) в топке x0 (или при х® хо), если для любой последовательности допустимых значений аргумента xn, n є N (xn¹x0), сходящейся к хо последовательность соответствующих значений функции ƒ(хn), n є N, сходится к числу А
В этом случае пишут
или ƒ(х)—>А при х→хо. Геометрический смысл предела функции: означает, что для всех точек х, достаточно близких к точке хо, соответствующие значения функции как угодно мало отличаются от числа А.
Определение 2 (на «языке ε», или по Коши).
Число А называется пределом функции в точке хо (или при х→хо), если для любого положительного ε найдется такое положительное число δ, что для все х¹хо, удовлетворяющих неравенству |х-хо|<δ, выполняется неравенство |ƒ(х)-А|<ε.
Геометрический смысл предела функции:
если для любой ε-окрестности точки А найдется такая δ-окрестность точки хо, что для всех х¹хо из етой δ-окрестность соответствующие значения функции ƒ(х) лежат в ε-окрестности точки А. Иными словами, точки графика функции у=ƒ(х) лежат внутри полосы шириной 2ε, ограниченной прямыми у=А+ ε , у=А-ε (см. рис. 110). Очевидно, что величина δ зависит от выбора ε, поэтому пишут δ=δ(ε).
<< Пример 16.1
Доказать, что
Решение: Возьмем произвольное ε>0, найдем δ=δ(ε)>0 такое, что для всех х, удовлетворяющих неравенству |х-3| < δ, выполняется неравенство |(2х-1)-5|<ε, т. е. |х-3|<ε.
Взяв δ=ε/2, видим, что для всех х, удовлетворяющих неравенству |х-3|< δ, выполняется неравенство |(2х-1)-5|<ε. Следовательно, lim(2x-1)=5 при х –>3.
<< Пример 16.2
16.2. Односторонние пределы
В определении предела функции считается, что х стремится к x0 любым способом: оставаясь меньшим, чем x0 (слева от х0), большим, чем хо (справа от хо), или колеблясь около точки x0.
Бывают случаи, когда способ приближения аргумента х к хо существенно влияет на значение придела функции. Поэтому вводят понятия односторонних пределов.
Число А1 называется пределом функции у=ƒ(х) слева в точке хо, если для любого число ε>0 существует число δ=δ(ε)> 0 такое, что при х є (х0-δ;xo), выполняется неравенство |ƒ(х)-А|<ε. Предел слева записывают так: limƒ(х)=А при х–>х0-0 или коротко: ƒ(хо-0)=А1 (обозначение Дирихле) (см. рис. 111).
Аналогично определяется предел функции справа, запишем его с помощью символов:
Коротко предел справа обозначают ƒ(хо+0)=А.
Пределы функции слева и справа называются односторонними пределами. Очевидно, если существует , то существуют и оба односторонних предела, причем А=А1=А2.
Справедливо и обратное утверждение: если существуют оба предела ƒ(х0-0) и ƒ(х0+0) и они равны, то существует предел и А=ƒ(х0-0).
Если же А1¹А2, то етот придел не существует.
16.3. Предел функции при х ® ∞
Пусть функция у=ƒ(х) определена в промежутке (-∞;∞). Число А называется пределом функции ƒ(х) при х→∞, если для любого положительного числа ε существует такое число М=М()>0, что при всех х, удовлетворяющих неравенству |х|>М выполняется неравенство |ƒ(х)-А|<ε. Коротко это определение можно записать так:
Геометрический смысл этого определения таков: для "ε>0 $ М>0, что при х є(-∞; -М) или х є(М; +∞) соответствующие значения функции ƒ(х) попадают в ε-окрестность точки А, т. е. точки графика лежат в полосе шириной 2ε, ограниченной прямыми у=А+ε и у=А-ε (см. рис. 112).
16.4. Бесконечно большая функция (б.б.ф.)
Функция у=ƒ(х) называется бесконечно большой при х→х0, если для любого числа М>0 существует число δ=δ(М)>0, что для всех х, удовлетворяющих неравенству 0<|х-хо|<δ, выполняется неравенство |ƒ(х)|>М.
Например, функция у=1/(х-2) есть б.б.ф. при х—>2.
Если ƒ(х) стремится к бесконечности при х→хо и принимает лишь положительные значения, то пишут
если лишь отрицательные значения, то
Функция у=ƒ(х), заданная на всей числовой прямой, называется бесконечно большой при х→∞, если для любого числа М>0 найдется такое число N=N(M)>0, что при всех х, удовлетворяющих неравенству |х|>N, выполняется неравенство |ƒ(х)|>М. Коротко:
Например, у=2х есть б.б.ф. при х→∞.
Отметим, что если аргумент х, стремясь к бесконечности, принимает лишь натуральные значения, т. е. хєN, то соответствующая б.б.ф. становится бесконечно большой последовательностью. Например, последовательность vn=n2+1, n є N, является бесконечно большой последовательностью. Очевидно, всякая б.б.ф. в окрестности точки хо является неограниченной в этой окрестности. Обратное утверждение неверно: неограниченная функция может и не быть б.б.ф. (Например, у=хsinх.)
Однако, если limƒ(х)=А при х→x0, где А — конечное число, то функция ƒ(х) ограничена в окрестности точки хо.
Действительно, из определения предела функции следует, что при х→ х0 выполняется условие |ƒ(х)-А|<ε. Следовательно, А-ε<ƒ(х)<А+ε при х є (хо-ε; хо+ε), а это и означает, что функция ƒ (х) ограничена.