Машины с независимым возбуждением

Обмотка возбуждения таких машин питается от отдельного источника напряжения (рис. 3.4).

Рис. 3.4. Схема подключения обмоток МПТ с независимым возбуждением. Рис. 3.5. Схема подключения обмоток машины с параллельным возбуждением.

Машины с параллельным возбуждением

Рис. 3.6. Механические характеристики ДПТ с независимым и с параллельным возбуждением. Рис 3.7. Внешние характеристики ГПТ с независимым и с параллельным возбуждением.

Обмотка возбуждения и обмотка якоря таких машин включаются параллельно (рис. 3.5). ДПТ с независимым и параллельным возбуждением имеют слабую зависимость скорости от момента на валу. Такие характеристики называются жесткими (рис. 3.6).

С ростом момента на валу ДПТ напряжение на якоре немного снижается вследствие роста тока и влияния активного сопротивления цепи якоря. Это уменьшает ток возбуждения и основное магнитное поле двигателя с параллельным возбуждением. Поэтому он вращается чуть быстрее, чем такой же двигатель с независимым возбуждением и той же нагрузкой. (Подробнее о влиянии основного поля на скорость ДПТ сказано далее.)

С ростом тока нагрузки напряжение ГПТ с параллельным возбуждением уменьшается вследствие влияния внутреннего сопротивления цепи якоря и размагничивающего действия якоря, что приводит с снижению тока возбуждения генератора и к дополнительному уменьшению его напряжения. Поэтому напряжение ГПТ с параллельным возбуждением сильнее зависит от тока, чем у ГПТ с независимым возбуждением.

Машины с последовательным возбуждением

Рис. 3.8. Схема подключения обмоток МПТ с последо- вательным возбуждением.

Обмотка возбуждения и обмотка якоря таких машин включаются последовательно (рис. 3.8). ДПТ с последовательным возбуждением имеют "мягкие" характеристики, то есть их скорость сильно зависит от момента на валу (рис. 3.9). Такая зависимость автоматически подстраивает скорость под нагрузку, обеспечивая постоянную мощность двигателя. Эти двигатели отличаются хорошими пусковыми характеристиками и большой перегрузочной способностью. Они применяются, например, для привода электротранспорта и подъемных механизмов.

ДПТ с последовательным возбуждением не имеют скорости холостого хода. Их нельзя включать без нагрузки, т.к. при этом они разгоняются до тех пор, пока не происходит механическая авария.

Рис. 3.9. Механическая характеристика ДПТ с последовательным возбуждением. Рис. 3.10. Внешняя ха- рактеристика ГПТ с последовательным возбуждением.

Ток нагрузки ГПТ с последовательным возбуждением является одновременно его током возбуждения. Поэтому на холостом ходу основное магнитное поле обусловлено только намагниченностью статора и генератор дает небольшое напряжение. При больших токах нагрузки напряжение падает из-за влияния сопротивления цепи якоря и размагничивающего действия якоря. ГПТ с последовательным возбуждением применяются в специальных случаях.

Машины со смешанным возбуждением

Они имеют две обмотки возбуждения - параллельную и последовательную (рис. 3.11). Характеристики таких машин могут различаться в зависимости от доли магнитного поля, создаваемого каждой из обмоток возбуждения. ГПТ со смешанным возбуждением обычно делают так, чтобы напряжение мало зависело от тока нагрузки (рис. 3.13).

Рис. 3.11. Схема подключения обмоток машины со смешанным возбуждением. Рис. 3.12. Механическая характеристика ДПТ смешанного возбуждения. Рис. 3.13. Внешняя характеристика ГПТ смешанного возбуждения.

Схема замещения МПТ

МПТ представляется схемой замещения, изображенной на рис. 3.14. Здесь u – напряжение на якоре, R – сопротивление цепи якоря, i – ток якоря, e – ЭДС якоря (ЭДС вращения). Такая структура схемы следует из того, что напряжение на якоре складывается всего из двух составляющих, одна из которых определяется законом Ома, а вторая – законом электромагнитной индукции:

. (3.1)

При i > 0 (u > e) машина находится в режиме двигателя, при i = 0 (u = e) – в режиме идеального холостого хода, при i < 0 (u < e) – в режиме генератора.

Основные уравнения МПТ

По закону электромагнитной индукции ЭДС вращения e пропорциональна частоте вращения якоря n и основному магнитному потоку машины Ф:

, (3.2)

где ke - коэффициент, зависящий от конструкции машины.

Подставив (3.2) в (3.1), получим выражение для частоты вращения машины:

. (3.3)

По закону Ампера момент машины М пропорционален току якоря и основному магнитному потоку:

, (3.4)

где kM - коэффициент, зависящий от конструкции машины. Основной магнитный поток Ф пропорционален току возбуждения (у МПТ со смешанным возбуждением - полному току возбуждения).