И, как было отмечено выше, в своем развитии системы проходят четыре этапа (поиск состава системы, её структуры, адаптации (через механизм динамизации, и далее продолжается эволюция системы).

Закон есть закон

1. От систем к системным знаниям

В последнее время нам пришлось погрузиться в пучину многоплановой информации, причем совершенно иного качества, нежели та, которую мы получали до этого, и, которую мы относим к Системным знаниям, обещающим после овладения ими получить пропуск в некий Новый Мир, после посещения которого мы сами должны измениться, прежде всего, изнутри. К этим знаниям, да и к мыслям о своем предназначении на Земле. каждый приходит своим путем, потому что в этот период мы опираемся на прежние знания, которые были для большинства основой при формировании их мировоззрения. Вот поэтому решил написать материал, из которого среднестатистический соратник мог бы узнать то, что он не получил в свое время, да и не смог бы получить эти знания, не признаваемые в то время официальной наукой, подвергая их шельмованию также, как ныне шельмуют «Новые» (Системные) знания, которые мне повезло получить в силу ряда обстоятельств, а также найти в своих исследованиях в силу тех целей жизни, которые поставил перед собой ещё в школьные годы, да и в силу условий, в которых оказалась наша семья. Могу сказать, мне повезло, что я родился в Азербайджане (на стыке Ленкоранской низменности и Талышских гор) – территории бывшего древнего государства Ария – райского места, где все стимулировало к творчеству. Поэтому, как принято в нашей школе, делюсь информацией не только со слушателями нашей школы Системных Знаний, но и с теми, кто найдет её для себя полезной.

1. Развитие материи от первоосновных систем до Вселенной

С созданием конструктивной теории всего (КСВ), масштабы конструктов материи значительно расширились в глубину материи вплоть до конструктов Небытия с детализацией первооснов, а также уточнения некоторых особенностей мироздания на уровне единственной Вселенной, т.е. от Небытия до всего сущего, как утверждает автор данной теории, придерживающийся концепции «Теории Системной физики» Лучина А.А., в основе которой лежат первоосновы мироздания в виде частиц из электрической и магнитной материй. С другой стороны, благодаря всеобъемлющей теории мироздания Н.В. Левашова, охватывающей его от первичных материй до Большого космоса, состоящего из множества Вселенных попытаемся с системных позиций рассмотреть (предмет нашего Познания) наше Бытие. С точки зрения автора данной статьи в настоящее время есть лишь одна всеобъемлющая теория – неоднородная Вселенная Н.В. Левашова, в которой показано, что законы развития систем на макро- и микроуровне едины. Сам Мир един и состоит он из огромного множества систем разного ранга.

2. Что такое система?

Охарактеризуем её. Система - это соборное образование, обладающее следующими признаками:

- создано для определенных целей (набора функций) или одной главной полезной функции (ГПФ);

- состоит из частей (подсистем), взаимодействующих друг с другом с помощью полей, и иерархически взаимосвязанных друг с другом и работающих на ГПФ системы, входя при этом в надсистему на правах подсистемы, и состоящую из одинаковых (однородных) или разных (Разнородных) систем;

- имеет определенную структуру, сформированную её ГПФ.

Совокупность всех частей (соборное их состояние) во взаимодействии обладает таким качеством, каким не обладает ни одна из её частей в отдельности:

- существует огромное разнообразие систем, но в основе своей все они, состоят из одних и тех же частей, и функциональных структур.

Рассмотрим планету Земля как совокупность разных подсистем, соборно взаимодействующих друг с другом и работающих на её (общую) ГПФ. Итак, перед нами соборная система планеты Земля, состоящая из ряда материальных подсистем: физически плотной оболочки, биосферы, атмосферы, социума и техносферы… (рис. 1). Нас будет интересовать в первую очередь система, образованная из трех взаимодействующих через поля друг с другом подсистем: биосферы (БС) – техносферы (ТСф) – социума – Система Человечества (СЧ), пронизанные потоками первичных материй (ПМ), представляющих потоки электрических и магнитных частиц, ибо без полей нет взаимодействия (рис. 2.). Звено ПМ à БС à ответственно за развитие биосферы. Звено ПМ à СЧ è - ответственно за развитие социума. Здесь можно видеть, что «слабым» звеном является звено ПМ à ТСф è . Взаимодействия между потоками ПМ и техносферой пока практически нет и развитие идет медленнее. Понятно, что нынешняя система дисгармонична в своем развитии, т.к. нет гармонии между ПМ иТСф.

 

3. Законы развития Систем

 

Мы будем исходить из того, что наш мир системен, его системы развиваются по единым законам, которые можно познать и использовать для его Познания и его рационального планомерного совершенствования, без надежд на случайности, озарения и осенения, т.е. будет стремиться к построению логического фундамента, сформированного по законам непрерывной логики, общепринятой в содружестве разумных цивилизаций. С познанием законов развития систем многие виды творчества (изобретательство, открывательство, писательство и др.) станут обычным делом, ибо знания по ним будут получаться в школе на уроках методологии познания.

В процессе познания системы идёт накопление фактов, формирующих фактологическую картину исследуемого объекта из окружающего мира, о котором сформировано много моделей разных авторов, придерживающихся разных концепций, например, автор статьи придерживается концепции Н.В. Левашова (см. рис. 3). Это, как правило, множество разрозненных фактов, относящихся к единой картине мира, как бы «вырванных» из нее, но связанных исследователем в логическую систему, модель природной системы, предлагаемую им для объяснения наблюдаемых явлений. Факты можно связать между собой в разной последовательности. Однако, если модель какой-то факт не объясняет, возникает противоречие, разрешение которого позволяет сделать очередной шаг в развитии наших представлений в познании исследуемого объекта или явления. Этому способствует методология, основанная на знании законов рационального развития систем любых типов – С1, С2, …Сn (условная схема на рис.5.).

Основу для формирования систем составляют физические свойства её элементов, которые, взаимодействуя между собой через поля и образуют те или иные системы. Благодаря именно физическим свойствам и идет эволюция материи в соответствии со схемой, представленной на рис. 3. Вершиной этого развития является Разумная Вселенная с её Высшим Разумом, которая с определенного уровня может сама управлять и быть управляемой и самоуправляемой. Дадим определения некоторым понятиям, с которыми придется иметь дело.

Методология, с другой стороны – (греч. Путь, исследование) – система законов развития систем, принципов и способов организации и построения теоретической и практической деятельности, а также учение об этой системе (рис. 1). К сожалению, к методологии иногда обращаются аспиранты и докторанты при решении поставленных перед ними научных задач, не всегда понимая важность методологии в научных исследованиях. Правда, в вузе на лекциях по философии знакомят с некоторыми законами развития материального мира, но эти знания, к сожалению, проходящие и в данный момент не востребованы студентами.

ТЕОРИЯ – в широком смысле слова - комплекс взглядов, представлений, идей, направленных на истолкование и объяснение какого-либо явления... В основе любой теории лежит модель того явления или предмета (системы), которые ею исследуются. Модель объекта научной системы отличается от объекта, например, технической системы тем, что модель технической системы мы воплощаем в итоге в «металл», чтобы проверить её работоспособность, а модель научной системы воплощать не нужно – она уже существует в природе, поэтому нужно только проверить её соответствие природной системе. В основе любой теории лежит концепция (от лат. conceptio — понимание, система), определённый способ понимания, трактовки какого-либо предмета, явления, процесса, основная точка зрения на предмет и др., руководящая идея для их систематического освещения.

При разработке теории всегда выбирается конкретная паради́гма (от греч. παράδειγμα, «пример, модель, образец»): Научная парадигма — принятая научным сообществом модель рациональной научной деятельности. Например, неоднородность Вселенной в концепции Н.В. Левашова выступала в качестве парадигмы.

В ряде вузов, где готовят естественников (физиков, химиков и др.), знакомят с теориями проведения экспериментов, нашпигованных математикой и различными математическими моделям, а не с самой методологией науки. Об этом хорошо сказано А.М. Хатыбовым: разработка новых моделей, на основе ранее разработанных (логические спекуляции, примат субъективного над объективным):

• - гравитоны, магнетоны, электроны, фотоны (кванты воображаемых физических полей);

• - модели планетарных атомов (построены из электронов и протонов, якобы обладающих электрическими зарядами);

• - сильные взаимодействия (удерживают в ядрах атомов якобы отталкивающиеся друг от друга протоны);

• - волны Шрёдингера и Де Бройля (отражают воображаемый корпускулярно-волновой дуализм электронов);

• - квант действия (постоянная Планка) и принцип запрета Паули (появились, когда физики подгоняли под природу гипотетическую планетарную модель атома Нагаоки-Резерфорда); И т.д.

Коль мы утверждаем, что мир системен, то и системным должно быть и его познание, для чего мы строим научные модели объектов познания и систему представлений о них, называемой еще научной системой, которые также явлются системами и развиваются по тем же законам.

4. От древнего Метода проб и ошибок к Новым технологиям Познания окружающего м i ра

Известно, что развитие и зарождение любой науки идет через сбор и накопление фактов. Эти факты являются единичными актами процесса познания единой картины мира, добытые известными способами существующей в настоящее время методологии науки, базирующейся на древнем методе проб и ошибок (МПиО). При этом мало кто из ученых, вошедших в анналы истории науки, пытался поделиться с другими секретами своей творческой лаборатории, к которой они никого не допускали, и, с помощью которых они пришли к своему открытию. Это позволяло известным людям быть кумирами толпы почитателей и подогревать мысль о том, что они избранные, великие и какие-то особенные. Этим и пользовались историки науки, да и её популяризаторы, сочиняя различные мифы об ученых, изобретателях, художниках, деятелях искусства и т.д. не имея представлений об истинной технологии творчества, о тех трудностях, с которыми встречается творческий человек. Например, при изобретении щелочного аккумулятора Эдисон в своей лаборатории провел 50 000 физических экспериментов (проб). У него не было никакой методики, он, по-современному назывался бы «пробочником» и его «методика» похожа на поиск предмета в темноте и даже сравнима с поиском иголки в стогу сена путем перебора каждой соломинки, - что подметил Н. Тесла, временно работающий у Эдисона. Нужно отдать должное терпению и одержимости таких исследователей, но не их интеллекту. Поэтому такой человек, однажды сделав открытие или изобретение, далее не делает ни одного нового изобретения и открытия. Его можно отнести к категории «везунчиков», в свое время не прошедших мимо подсказанного случайно решения или действующие по подсказке: «бери и пробуй», авось и найдешь что-то. Уровень творчества здесь значительно ниже, нежели при решении поставленной задачи через анализ и постепенное выделение содержащегося в ней диалектического противоречия (ДП) – самого высокого уровня творчества. Все остальное от лукавого! Например, миф, придуманный историками науки о том, что периодическая система химических элементов приснилась Менделееву Д.И. во сне, аналогично и миф о том, что открытие формулы бензола (С6Н6) Кекуле историки приписывают опять же его сну, в котором он увидел бензольное кольцо. Другой историк считает, что Кекуле увидел «бензольное «кольцо, обратив внимание из окна омнибуса на цирковую повозку, в клетке которой обезьяны играя друг с другом, одновременно взялись за хвосты, образовав это самое кольцо. И таких случаев в истории науки множество, но все они не соответствуют действительности, т.е. условий при которых сделано открытие, а главное они несут в себе отпечаток МПиО, когда автор случайно делает открытие в обнаруженном артефакте, не проходя мимо, как это сделал Флеминг, обратив внимание на то, что плесень растворяла колонию стафилококков в чашке Петри (т.к. его мозг был готов принять то, что не приняли остальные). Позже он выделил первый антибиотик пенициллин. Открытие пенициллина было задержано на 50 лет и стоило жизни более 20 миллионам, унесших эпидемией гриппа «Испанка». Тогда как физик Тиндол решая другую задачу всё же записал, а своем журнале действие плесени на колонию бактерий, но не сделал из этого вывод - прошел мимо открытия. Спрашивается, является ли такой способ делания открытий, творчеством? Конечно – нет! Другой пример. Все видели, как кошка греется на солнце, и каждый раз, как только тень закрывала освещенное место, кошка переходила на солнечное место и ложилась к Солнцу тем ж боком. Тысячи прохожих проходили мимо, не обращая внимания на кошку. Но один из тысячи – Роберт Кох в 1882 г., обратил внимание на этот факт. Оказалось, что кошка подставляла тот бок, где у кошки была язва на коже. Этот факт позволил Р. Коху открыть способ лечения туберкулёза кожи ультрафиолетом, за который он получил в 1905 г. Нобелевскую премию. Кох был истинным учёным, поэтому не прошел мимо артефакта, сделав из него научный факт и нашёл причину поведения кошки…Аналогично, и Флеминг является истинным ученым, тогда как Тиндол – обычный статист в науке.

Признавая тот факт, что мир системен, следует признать, что и технология творчества должна отражать эту системность и законы, по которым построен этот мир. Для самого процесса познания нужна соответствующая технология добывания Системных знаний, которая и будет определять саму логику познания.

Существующая технология добывания Системных знаний и развития систем посредством возможностей человека основана на древнем методе проб и ошибок (МПиО) или методе научного тыка, ведущие к логическому фундаменту, построенному на двоичной логике, от которой нужно уходить. Практически развития науки МПиО -это гадание на «кофейной гуще» и, по большому счету, называться наукой не может. Нужно уходить от антинаучной технологии добывания знаний МПиО и строить Системные знания и технологию их добывания на базе знания и выявления законов развития любых Систем (Технических Систем, Научных, Художественных, Социальных и др. Систем), в соответствии с которыми следует развивать существующие Системы, помня, что законы развития и формирования систем едины на микро- и макроуровне. Не случайно уже в III –м веке математик Паппа ввёл в науку понятие об эвристике – науке делания изобретений и открытий. Настолько важна она для всего человечества.

В наш 21-й век работа с помощью МПиО в науке и технике…. – ПРЕСТУПЛЕНИЕ перед Человечеством и его Разумом. Мир системен, и это главное…Поэтому в основу развития современных знаний должны быть положены Системные Знания, которые мы по привычке относим к Новым Знаниям, хотя само понятие «Новые» отражает» лишь временную привязку современных знаний к какому-либо периоду развития того объекта, который находится в фокусе нашего внимания, а значит связанные с функционированием и развитием систем. И, коль они отражают развитие систем ныне рассматриваемых, следовательно, в данный момент они являются Новыми. Например, в физике с изменением парадигмы меняется смысл и содержание прежних терминов. С появлением новых теорий «старые» рассматриваются как предельное состояние новых, при этом идёт отрицание «старых» теорий, как объективно не отражающих изучаемый мир. Иначе говоря, с формализацией теории, т.е. с внедрением математического аппарата размывается истинное представление (образ) об объекте и вводятся псевдопредставления математического аппарата в виде математических моделей или представлений, ничего общего не имеющего с реальным объектом (цвет, очарованность, странность и т.п. у кварка в квантовой физике). Всё почти по Кузьме Пруткову.

Мы будем исходить из того, что наш мир системен, состоит из вечной материи, как подчеркивал Лучин А.А, - развивающейся в бесконечном пространстве бесконечное время. При этом его системы развиваются по законам, которые можно выявить и использовать для его реального Познания и его рационального совершенствования, без надежд на случайности, везение, озарения и осенения, т.е. будут стремиться к построению логического фундамента по законам непрерывной логики, общепринятой в содружестве разумных цивилизаций.

Поэтому, с накоплением фактов, они постепенно образуют фактологическую картину исследуемого объекта из окружающего мира, состоящего из множества систем С1…, Сn. (схема.5.), как правило, множество разрозненных фактов, относящихся к единой картине мира, как бы «вырванных» из нее, но связанных исследователем в логическую систему, предлагаемую им для объяснения наблюдаемых явлений. Фактически формируется калейдоскопическая картина мира, а не мозаичная, где отсутствие или добавление еще одного факте, в целом не меняют её. Факты можно связать между собой в разной последовательности, но именно непротиворечивая последовательность будет считаться устранившей противоречия и на данный момент может считаться решением возникшей задачи. Это путь к изобретению и открытию. Этими вопросами и занимается наука методология.

 

5. Законы диалектики - ключи к тайнам Вселенной

 

Выделяются три базовых закона диалектики и один в качестве принципа единства мира (фактически имеющий статус закона), с помощью которых мы будем познавать окружающий нас мир.

Систему законов можно продемонстрировать на волновой модели развития систем (рис. 10) [12]:

1. закон перехода количественных изменений в качественные;

2. закон единства и борьбы противоположностей;

3. закон отрицание отрицания;

4. закон взаимосвязи всех элементов системы в единое целое.

Развитие окружающего мира идет по пути накопления знаний, а затем их отрицания, когда они начинают тормозить познание

 

В своем развитии системы проходят четыре этапа (поиск состава системы, её структуры, адаптации через механизм (динамизации) к окружающей среде и её эволюция) (рис. 6). При этом после синтеза исходной моно-системы идет процесс разворачивание системы по линии моно-би-поли-сложные системы – с целью поиска новых полезных функций (ПФ) через их дифференциацию с одновременной интеграцией путем сворачивания системы через поглощение (замену) их на всех иерархических уровнях подсистемами или идеальным веществом (ИВ-1, ИВ-2, ИВ-3…), а также системами низшего ранга, выполняющих функции систем высшего ранга. Процесс разворачивания системы идет по пути накопления количества качественных изменений вплоть до её сбоев в работе и, далее, как выход из сложившейся ситуации, система начинает сворачиваться в идеальное вещество, создавая новую моно-систему’, путем перехода количественных изменений в качественные, а далее новая уже система’ вновь проходит длительный путь разворачивания и сворачивания её в новую моно-систему''…. На схеме рис. 2. представлено взаимодействие четырех законов далектики: закон единства и борьбы противоположностей,закон прехода количественных изменений в качественные, закон отрицание отрицания и закон единства. Этот процесс волнообразный, объемный и происходит с материей в бесконечном пространстве бесконечное время.

А начинается он с синтеза исходной системы через борьбу и единство противоположных свойств системы (да, тот самый закон, который ныне критикуется, хотя является наиболее продуктивным и многие крупные изобретния и открытия обязаны ему.). При этом, согласно четвертому закону диалектики, все в этом мире взаимосвязано и все системы находятся в гармоничном единстве.

Следует также различать следующие девять законов развития систем, которые составляют основу современной отечественной Теории Решения Изобретательских Задач (рис. 7). Они проявляются на четырех этапах развития систем.

В Отечественной Теории Решения Изобретательских Задач (ТРИЗ) есть раздел, относящийся к законам развития ЗРТС (Законы Развития Технических, и не только, Систем. см. рис. 7), где отражены и тенденции развития систем на том или ином этапе.).

 

6. Законы РзвитияТехнических Систем и не только…

 

1. Закон полноты частей системы : Необходимым условием принципиальной жизнеспособности технической системы является наличие и минимальная работоспособность основных частей системы (рис. 3). Чтобы техническая система была управляемой, необходимо, чтобы хотя бы одна е часть была управляемой. Быть управляемой - значит менять свойства так, как это нужно тому, кто управляет.

2. Закон «энергетической проводимости» системы : Необходимым условием принципиальной жизнеспособности технической системы является сквозной проход энергии по всем частям системы.

Чтобы часть технической системы была управляемой, необходимо обеспечить энергетическую проводимость между этой частью и органами управления.

3. Закон согласования ритмики частей системы : Необходимым условием принципиальной жизнеспособности технической системы является согласование (или сознательное рассогласование) частоты колебаний (периодичности работы) всех частей системы.

4. Закон увеличения степени идеальности системы : Развитие всех систем идет в направлении увеличения степени идеальности.

Идеальная техническая система – это система, вес, объем и площадь которой стремятся к нулю, хотя ё способность выполнять работу не уменьшается. Или: идеальная система – когда системы нет, а её функции выполняются.

5. Закон неравномерности развития частей системы: Развитие частей системы идет неравномерно: чем, сложнее система, тем неравномернее развитие ее частей.

6. Закон перехода в надсистему : исчерпав возможности развития, система включается в надсистему в качестве одной из частей; при этом дальнейшее развитие идет на уровне надсистемы.

7. Закон увеличения степени вепольности: Развитие технических систем идет в направлении увеличения степени вепольности: невепольные системы стремятся стать вепольными, а в вепольных системах развитие идет путем увеличения числа связей между элементами, повышения отзывчивости (чувствительности) элементов, увеличения количества элементов

8. Закон повышения степени динамичности : Жесткие системы, для повышения их эффективности управления должны становиться динамичными, то есть переходить к более гибкой, быстро меняющейся структуре и к режиму работы, подстраивающемуся под изменения внешней среды. В первую оередь динаихировть систему нужно там, где она часто ломается.

9. Закон перехода с макроуровня на микроуровень:

Развитие рабочих органов идет сначала на макро-, а затем на микроуровне.

Сами законы образуют четырехэтапную иерархию законов развития технических систем (рис 7.).

И, как было отмечено выше, в своем развитии системы проходят четыре этапа (поиск состава системы, её структуры, адаптации (через механизм динамизации, и далее продолжается эволюция системы).

 

1-й этап : поиск состава системы (из каких элементов должна состоять система, чтобы выполнить заданную ГПФ?);

2-й этап: поиск структуры (как должны быть расположены эти элементы, чтобы выполнять свою ГПФ?); Как должны быть расположены элементы системы в пространстве?

3-й этап: Адаптация (динамика) (каким свойство должна обладать система (процесс) или ее (его) часть, чтобы легко адаптироваться к меняющейся окружающей ее среде – природной или технической?);

4-й этап. эволюцию или саморазвитие. Чем выше уровень развития системы, тем она становится более управляемой и, в итоге, переходит на уровень самоуправления, самоорганизации.

Самым продолжительным этапом, особенно для техники, является этап адаптации, когда систему адаптируют к условиям, в которых она должна функционировать.

Все системы в любых областях человеческой деятельности развиваются через диалектические противоречия: техническое, физическое и административное, а при решении сложных задач возникают цепочки противоречий, с устранением которых формируется более чёткое представление об Истине.

Примеры: 1. Этап адаптации элементов системы (состава) к конкретным условиям и динамизации её частей на примере атома Бора-Резерорда. Модель атома Резерфорда (1911 г.) — найдена наиболее эффективная при данном составе и структуре, а также условиях окружающей среды введены элементы динамики; вращающиеся электроны адаптированы к кулоновскому воздействию ядра: вокруг заряженного ядра вращаются электроны, кулоновское притяжение которых компенсируется центробежными силами, но, в соответствии с классическими представлениями, которые рассматривали процесс излучения и поглощения, как непрерывный волновой процесс, атом должен постоянно излучать энергию (по Максвеллу), т.е. вращающийся вокруг ядра электрон должен через некоторое время упасть на него. Но опыт показывает, что атом устойчив. Сохранена неоднородная система.

2. А далее этап адаптации структуры системы к конкретным условиям и динамизация её частей. Квантовая модель атома Н. Бора и его аспиранта (1913 г.) — найдена как непротиворечивая структура с разрешенными орбитами электронов при данном составе атома и структуре. В результате найдено объяснение стабильности атома: электроны вращаются по стационарным квантованным орбитам; переход с одной на другую сопровождается излучением. Сохранена неоднородная система, но в пространстве вокруг ядра появились зоны (орбиты) с особыми свойствами — неоднородностью качеств.

3. Завершение этапа адаптации структуры и состава к конкретным условиям. Современная модель атома. Итак, предложена адаптивная система: электроны вращаются по орбиталям, имея несколько квантовых чисел. Закреплена неоднородность системы, но противоречия остались.

 

 

Из трех приведенных моделей атома ни одна из них не является даже грубым приближением к истине.

7. Как рождаются системы

Рождение любой системы начинается рабочего органа (РО). Это может быть любой предмет (даже случайный) имеющий признаки рабочего органа и способный выполнять его функцию (см. нижеприведенные рисунки и рис.8.). Модель Модуля любой технической системы состоит из четырех элементов (РО, Т, Д, ОУ): Рабочего Органа, Трансмиссию, Двигателя (или Источника Энергии) и Органа Управления. При этом система может быть синтезирована теоретически на любом уровне мерной масштабности, причем в одном элементе системы могут быть совмещены функции всех её элементов, в таком случае данный элемент является идеальным. Сквозь систему могут проходить потоки Энергии (Э), Вещества (В) и Информации (И).

 

 

 

А вот перед вами проволока из материала обладающего термомеханической памятью формы (рис.9). В холодном состоянии проволоку изогнули (как показано на рисунке). Затем проволоку нагрели и она вновь вернулась в исходное состояние. Но вот изобретатель предложил использовать возврат проволоки в прежнее состояние для разрыва электрической цепи реле при повышении температуры (рис.9.). Где в этом решении все части технической система: Д, ТР, РО, ОУ? – Они указаны на рис.

Выше приведены примеры рождения и синтеза древних инструментов - систем из случайных элементов, найденных в природе. Практически у всех обрабатывающих инструментов (сверло, инструмент для лучкового сверления, молоток, топор, пила, якорь, плуг, пра-пра-пра-…дедушкой были заостренный камень или заостренная палка, что продемонстрировано на приведенных рисунках.

При этом функции трансмиссии, двигателя и органа управления выполнял сам человек: его рука(и), его мускульная сила и его голова (ум).

При дальнейшем совершенствовании части системы заменялись искусственными – рука –обработанной палкой, мускульная сила человека заменялась энергией животных, а затем энергией воды, ветра и т.п., но управление системой оставалось за головой человека, его умом.

Таким образом рождение искусственных систем происходит в течение трех этапов:

1-й этап: зарождение потребностей.

Воздействие стихийных сил (претензий) внешней среды на человека или другие искусственные системы порождают потребности устранить вредное воздействие или использовать их энергию для решения конкретных задач.

2-й этап: Досистемный уровень. Поиск путей удовлетворения потребностей.

3-й этап: Рождение технических (искусственных) систем.

Подробно каждый этап раскрыт в представленной схеме (рис.8).