25Геометрическое распределение.

Дискретная случайная величина X имеет геометрическое распределение, если вероятности ее возможных значений 0,1,….,k,.. определяются так:

где p – параметр распределения, а q=1-p.

0 1 2 k
p

На практике геометрическое распределение появляется при следующих условиях. Пусть производится некоторый опыт, в котором некоторое событие появляется с вероятностью p. Опыты производятся последовательно, до наступления события. Случайная величина X, равная числу неудачных опытов, имеет геометрическое распределение.

Числовые характеристики геометрического распределения:

26Смещенное геометрическое распределение.

“Смещенное” геометрическое распределение получается из геометрического путем преобразования СВ X и СВ Y=X+1.

Дискретная случайная величина Y имеет смещенное геометрическое распределение если вероятности ее возможных значений 1,…,k, определяются так

где p – параметр распределения а q=1-p.

1 2 3 k
p

Числовые характеристики смещенного геометрического распределения определяются с использованием их свойств:

27Биномиальное распределение.

Дискретная случайная величина X имеет биноминальное распределение, если ее закон распределения описывается формулой Бернулли:

где p – параметр распределения

Распределение загасит от двух параметров п и р.

На практике биноминальное распределение возникает при следующих условиях. Пусть производится серия из п испытании, в каждом из которых некоторое событие появляется с вероятностью р. Случайная величина X, равная числу наступлений события в п опытах, имеет биноминальное распределение.

Числовые характеристики: М [Х] = n, D[X]= npq.

Название объясняется тем, что правую часть равенства можно рассматривать как общий член разложения Бинома Ньютона:

,

 

т.е. .

28Распределение Пуассона.

Соотношениями, описывающими биноминальное распределение, удобно пользоваться в тех случаях, если величина и достаточно мала, а р велико.

Теорема: Если, а так, что то

при любом k=0,1,….

Числовые характеристики: М[Х] = α, D[X] = α.

Закон Пуассона зависит от одного параметра α, смысл которого заключается в следующем: он является одновременно и математическим ожиданием и дисперсией случайной величины Х.