13Локальная и интегральная теоремы Лапласа.
Теоремы Муавра-Лапласа. На практике приближенные формулы Муавра-Лапласа применяются в случае, когда p и q не малы , а npq>9.
Локальная теорема Муавра-Лапласа. Если вероятность появления события А в каждом из n независимых испытаний равна одной и той же постоянной р=const (0<р<1), то вероятность
того, что во всех этих испытаниях событие А появится ровно k раз, приближенно вычисляется формулой:
, (4.8)
где: ,
-- кривая Гаусса.
Таблицы значений функции даны в приложениях к учебникам по теории вероятностей
Интегральная теорема Муавра-Лапласа. Пусть вероятность появления события А в каждом из n (n→∞) независимых испытаний равна одной и той же постоянной р (0<р<1), то вероятность того, что во всех этих испытаниях событие А появится не менее k1 и не более k2 раз, приближенно вычисляется формулой:
, (4.9)
где
- функция Лапласа,
,
Значения аргументов функции Лапласа для х Î[0,5] даны в приложениях к учебникам по теории вероятностей (Приложение 2 настоящего методического пособия), для x>5 F(x)=1/2.Функция нечетная - F(x)= F(-x).
14Определение и классификация случайных величин.
Под случайной величиной понимается величина, которая в результате опыта со случайным исходом принимает то или иное значение. Возможные значения случайной величины образуют множество Ξ, которое называется множеством возможных значений случайной величины. Обозначения случайной величины: X, Y, Z; возможные значения случайной величины: x, y, z.
В зависимости от вида множества Ξ случайные величины могут быть дискретными и недискретными. СВ Х называется дискретной, если множество ее возможных значений Ξ – счетное или конечное. Если множество возможных значений СВ несчетно, то такая СВ является недискретной.
В теоретико-множественной трактовке основных понятий теории вероятностей случайная величина Х есть функция элементарного события: X=φ(ω), где ω – элементарное событие, принадлежащее пространству Ω. При этом множество Ξ возможных значений СВ Х состоит из всех значений, которые принимает функция φ(ω).