Показательное распределение.
Показательным (экспоненциальным) называют распределение вероятностей непрерывной случайной величины Х, которое описывается плотностью
(6.5)
В отличие от нормального распределения, показательный закон определяется только одним параметром λ. В этом его преимущество, так как обычно параметры распределения заранее не известны и их приходится оценивать приближенно. Понятно, что оценить один параметр проще, чем несколько.
Найдем функцию распределения показательного закона:
Следовательно,
(6.6)
Теперь можно найти вероятность попадания показательно распределенной случайной величины в интервал (а, b):
. (6.7)
Значения функции е-х можно найти из таблиц.
Равномерный закон распределения.
Часто на практике мы имеем дело со случайными величинами, распределенными определенным типовым образом, то есть такими, закон распределения которых имеет некоторую стандартную форму. В прошлой лекции были рассмотрены примеры таких законов распределения для дискретных случайных величин (биномиальный и Пуассона). Для непрерывных случайных величин тоже существуют часто встречающиеся виды закона распределения, и в качестве первого из них рассмотрим равномерный закон.
Закон распределения непрерывной случайной величины называется равномерным, если на интервале, которому принадлежат все возможные значения случайной величины, плотность распределения сохраняет постоянное значение ( f(x) = const при a ≤ x ≤ b , f(x) = 0 при x < a , x > b .
Найдем значение, которое принимает f(x) при Из условия нормировки следует, что
откуда
.
Вероятность попадания равномерно распределенной случайной величины на интервал равна при этом
Вид функции распределения для нормального закона:
Другие виды распределений
Биномиальное распределение.
Для дискретной случайной величины Х, представляющей собой число появлений события А в серии из п независимых испытаний (см. лекцию 6), М(Х) можно найти, используя свойство 4 математического ожидания. Пусть Х1 – число появлений А в первом испытании, Х2 – во втором и т.д. При этом каждая из случайных величин Х i задается рядом распределения вида
Xi | 0 | 1 |
pi | q | p |
Следовательно, М(Х i) = p. Тогда
Аналогичным образом вычислим дисперсию: D(Xi) = 0²·q + 1²·p – p²= p – p² = p(1 – p), откуда по свойству 4 дисперсии
12. Закон больших чисел. Предельные теоремы. Неравенство Чебышева. Теоремы Чебышева. Теорема Бернулли.
Изучение статистических закономерностей позволило установить, что при некоторых условиях суммарное поведение большого количества случайных величин почти утрачи-вает случайный характер и становится закономерным (иначе говоря, случайные отклоне-ния от некоторого среднего поведения взаимно погашаются). В частности, если влияние на сумму отдельных слагаемых является равномерно малым, закон распределения суммы приближается к нормальному. Математическая формулировка этого утверждения дается в группе теорем, называемой законом больших чисел.