Дискретные случайные величины.

Для задания дискретной случайной величины нужно знать ее возможные значения и вероятности, с которыми принимаются эти значения. Соответствие между ними называется законом распределения случайной величины. Он может иметь вид таблицы, формулы или графика.

Таблица, в которой перечислены возможные значения дискретной случайной величины и соответствующие им вероятности, называется рядом распределения:

xi x1 x2 xn
pi p1 p2 pn

 

Заметим, что событие, заключающееся в том, что случайная величина примет одно из своих возможных значений, является достоверным, поэтому

Графически закон распределения дискретной случайной величины можно представить в виде многоугольника распределения – ломаной, соединяющей точки плоскости с координатами (xi , pi).

x1 x2 x3 x4 x5

Математическим ожиданием дискретной случайной величины называ-ется сумма произведений ее возможных значений на соответствующие им вероятности:

М(Х) = х1р1 + х2р2 + … + хпрп . (7.1)

Если число возможных значений случайной величины бесконечно, то , если полученный ряд сходится абсолютно.

Замечание 1. Математическое ожидание называют иногда взвешенным средним, так как оно приближенно равно среднему арифметическому наблюдаемых значений случайной величины при большом числе опытов.

Замечание 2. Из определения математического ожидания следует, что его значение не меньше наименьшего возможного значения случайной величины и не больше наибольше-го.

Замечание 3. Математическое ожидание дискретной случайной величины есть неслучай-ная (постоянная) величина. В дальнейшем увидим, что это же справедливо и для непре-рывных случайных величин.

Свойства математического ожидания.

1)Математическое ожидание постоянной равно самой постоянной:

М(С) = С. (7.2)

Доказательство. Если рассматривать С как дискретную случайную величину, принимающую только одно значение С с вероятностью р = 1, то М(С) = С·1 = С.

2)Постоянный множитель можно выносит за знак математического ожидания:

М(СХ) = С М(Х). (7.3)

Доказательство. Если случайная величина Х задана рядом распределения

xi x1 x2 xn
pi p1 p2 pn

 

то ряд распределения для СХ имеет вид:

С xi С x1 С x2 С xn
pi p1 p2 pn

 

Тогда М(СХ) = Сх1р1 + Сх2р2 + … + Схпрп = С( х1р1 + х2р2 + … + хпрп) = СМ(Х).

 

Две случайные величины называются независимыми, если закон распределения одной из них не зависит от того, какие значения приняла другая. В противном случае случайные величины зависимы.

Назовем произведением независимых случайных величин Х и Y случайную величину XY, возможные значения которой равны произведениям всех возможных значений Х на все возможные значения Y, а соответствующие им вероят-ности равны произведениям вероятностей сомножителей.

1) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M(XY) = M(X)M(Y). (7.4)

Доказательство. Для упрощения вычислений ограничимся случаем, когда Х и Y принимают только по два возможных значения:

xi x1 x2
pi p1 p2

 

у i у1 у2
gi g1 g2

 

Тогда ряд распределения для XY выглядит так:

Х Y x1y1 x2y1 x1y2 x2y2
p p1g1 p2 g1 p1g2 p2g2

 

Следовательно, M(XY) = x1y1·p1g1 + x2y1·p2g1 + x1y2·p1g2 + x2y2·p2g2 = y1g1(x1p1 + x2p2) + + y2g2(x1p1 + x2p2) = (y1g1 + y2g2) (x1p1 + x2p2) = M(XM(Y).

 

Замечание 1. Аналогично можно доказать это свойство для большего количества возможных значений сомножителей.

Замечание 2. Свойство 3 справедливо для произведения любого числа независимых случайных величин, что доказывается методом математической индукции.

Определим сумму случайных величин Х и Y как случайную величину Х + Y, возможные значения которой равны суммам каждого возможного значения Х с каждым возможным значением Y; вероятности таких сумм равны произведениям вероятностей слагаемых (для зависимых случайных величин – произведениям вероятности одного слагаемого на условную вероятность второго).

4) Математическое ожидание суммы двух случайных величин ( зависимых или незави-симых ) равно сумме математических ожиданий слагаемых:

M (X + Y) = M (X) + M (Y). (7.5)

Доказательство.

Вновь рассмотрим случайные величины, заданные рядами распределения, приведен-ными при доказательстве свойства 3. Тогда возможными значениями X + Y являются х1 + у1, х1 + у2, х2 + у1, х2 + у2. Обозначим их вероятности соответственно как р11, р12, р21 и р22. Найдем М( Х +Y ) = (x1 + y1)p11 + (x1 + y2)p12 + (x2 + y1)p21 + (x2 + y2)p22 =

= x1(p11 + p12) + x2(p21 + p22) + y1(p11 + p21) + y2(p12 + p22).

Докажем, что р11 + р22 = р1. Действительно, событие, состоящее в том, что X + Y примет значения х1 + у1 или х1 + у2 и вероятность которого равна р11 + р22, совпадает с событием, заключающемся в том, что Х = х1 (его вероятность – р1). Аналогично дока-зывается, что p21 + p22 = р2, p11 + p21 = g1, p12 + p22 = g2. Значит,

M(X + Y) = x1p1 + x2p2 + y1g1 + y2g2 = M (X) + M (Y).

Замечание. Из свойства 4 следует, что сумма любого числа случайных величин равна сумме математических ожиданий слагаемых.

8.Отклонение случайной величины от ее математического ожидания. Дисперсия ДСВ. Свойства дисперсии.

Для того, чтобы иметь представление о поведении случайной величины, недостаточно знать только ее математическое ожидание. Рассмотрим две случайные величины: Х и Y, заданные рядами распределения вида

Х 49 50 51
р 0,1 0,8 0,1
Y 0 100
p 0,5 0,5

Найдем М(Х) = 49·0,1 + 50·0,8 + 51·0,1 = 50, М(Y) = 0·0,5 + 100·0,5 = 50. Как видно, мате-матические ожидания обеих величин равны, но если для Х М(Х) хорошо описывает пове-дение случайной величины, являясь ее наиболее вероятным возможным значением (при-чем остальные значения ненамного отличаются от 50), то значения Y существенно отсто-ят от М(Y). Следовательно, наряду с математическим ожиданием желательно знать, на-сколько значения случайной величины отклоняются от него. Для характеристики этого показателя служит дисперсия.

Дисперсией (рассеянием) случайной величины называется математи-ческое ожидание квадрата ее отклонения от ее математического ожидания:

D(X) = M (X – M(X))².

Замечание 1. В определении дисперсии оценивается не само отклонение от среднего, а его квадрат. Это сделано для того, чтобы отклонения разных знаков не компенсировали друг друга.

Замечание 2. Из определения дисперсии следует, что эта величина принимает только неотрицательные значения.

Замечание 3. Существует более удобная для расчетов формула для вычисления дисперсии, справедливость которой доказывается в следующей теореме:

Теорема D(X) = M(X ²) – M ²(X). Доказательство.

Используя то, что М(Х) – постоянная величина, и свойства математического ожидания, преобразуем формулу (7.6) к виду:

D(X) = M(X – M(X))² = M(X² - 2X·M(X) + M²(X)) = M(X²) – 2M(XM(X) + M²(X) =

= M(X²) – 2M²(X) + M²(X) = M(X²) – M²(X), что и требовалось доказать.

Свойства дисперсии.

1) Дисперсия постоянной величины С равна нулю:

D (C) = 0.

Док-во.D(C) = M((C – M(C))²) = M((C – C)²) = M(0) = 0.

2) Постоянный множитель можно выносить за знак дисперсии, возведя его в квадрат:

D(CX) = C²D(X).

Доказательство. D(CX) = M((CX – M(CX))²) = M((CX – CM(X))²) = M(C²(X – M(X))²) = C²D(X).

3) Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий: D(X + Y) = D(X) + D(Y).

Доказательство. D(X + Y) = M(X² + 2XY + Y²) – (M(X) + M(Y))² = M(X²) + 2M(X)M(Y) +

+ M(Y²) – M²(X) – 2M(X)M(Y) – M²(Y) = (M(X²) – M²(X)) + (M(Y²) – M²(Y)) = D(X) + D(Y).

Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме их дисперсий.

Следствие 2. Дисперсия суммы постоянной и случайной величин равна дисперсии случайной величины.

4) Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:

D(X – Y) = D(X) + D(Y). (7.11)

Доказательство. D(X – Y) = D(X) + D(-Y) = D(X) + (-1)²D(Y) = D(X) + D(X).

Дисперсия дает среднее значение квадрата отклонения случайной величины от среднего; для оценки самого отклонения служит величина, называемая средним квадратическим отклонением.

Средним квадратическим отклонением σ случайной величины Х называется квадратный корень из дисперсии:

. (7.12)

9. Непрерывные случайные величины и их характеристики. Функции распределения. Свойства функции распределения. График функции распределения.

Функцией распределения F ( x ) случайной величины Х называется вероятность того, что случайная величина примет значение, меньшее х: F (x) = p (X < x).

Свойства функции распределения.

1) 0 ≤ F(x) ≤ 1. Действительно, так как функция распределения представляет собой вероятность, она может принимать только те значения, которые принимает вероятность.

2) Функция распределения является неубывающей функцией, то есть F(x2) ≥ F(x1) при х2 > x1. Это следует из того, что F(x2) = p(X < x2) = p(X < x1) + p(x1X < x2) ≥ F(x1).

3) В частности, если все возможные значения Х лежат на интервале [a , b], то F(x) = 0 при ха и F(x) = 1 при хb. Действительно, X < a – событие невозможное, а X < b – достоверное.

4) Вероятность того, что случайная величина примет значение из интервала [a , b], равна разности значений функции распределения на концах интервала:

p ( a < X < b ) = F(b) – F(a).

Справедливость этого утверждения следует из определения функции распределения (см. свойство 2).

Для дискретной случайной величины значение F(x) в каждой точке представляет собой сумму вероятностей тех ее возможных значений, которые меньше аргумента функции.

10. Плотность распределения вероятностей НСВ. Вероятность попадания НСВ. Свойства плотности распределения. Числовые характеристики НСВ.

Определение и свойства функции распределения сохраняются и для непрерывной случайной величины, для которой функцию распределения можно считать одним из видов задания закона распределения. Но для непрерывной случайной величины вероятность каждого отдельного ее значения равна 0. Это следует из свойства 4 функции распределения: р(Х = а) = F(a) – F(a) = 0. Поэтому для такой случайной величины имеет смысл говорить только о вероятности ее попадания в некоторый интервал.

Вторым способом задания закона распределения непрерывной случайной величины является так называемая плотность распределения (плотность вероятности, дифферен-циальная функция).

Определение 5.1. Функция f(x), называемая плотностью распределения непрерывной случайной величины, определяется по формуле:

f (x) = F ′(x),

то есть является производной функции распределения.

Свойства плотности распределения.

1) f(x) ≥ 0, так как функция распределения является неубывающей.

2) , что следует из определения плотности распределения.

3) Вероятность попадания случайной величины в интервал (а, b) определяется формулой Действительно,

4) (условие нормировки). Его справедливость следует из того, что а

5) так как при

Таким образом, график плотности распределения представляет собой кривую, располо-женную выше оси Ох, причем эта ось является ее горизонтальной асимптотой при (последнее справедливо только для случайных величин, множеством возможных значений которых является все множество действительных чисел). Площадь криволинейной трапеции, ограниченной графиком этой функции, равна единице.

Замечание. Если все возможные значения непрерывной случайной величины сосредоточе-ны на интервале [a , b], то все интегралы вычисляются в этих пределах, а вне интервала [a , b] f(x) ≡ 0.