Механизм прерываний
Механизм прерываний поддерживается аппаратными средствами компьютера и программными средствами операционной системы. Аппаратная поддержка прерываний имеет свои особенности, зависящие от типа процессора и других аппаратных компонентов, передающих сигнал запроса прерывания от внешнего устройства к процессору (таких, как контроллер внешнего устройства, шины подключения внешних устройств, контроллер прерываний, являющийся посредником между сигналами шины и сигналами процессора). Особенности аппаратной peaлизации прерываний оказывают влияние на средства программной поддержки прерываний, работающие в составе ОС.
Существуют два основных способа, с помощью которых шины выполняют прерывания: векторный (vectored) и опрашиваемый (polled). В обоих способах процессору предоставляется информация об уровне приоритета прерывания на шине подключения внешних устройств. В случае векторных прерываний в процессор передается также информация о начальном адресе программы обработки возникшего прерывания — обработчика прерываний.
Устройствам, которые используют векторные прерывания, назначается вектор прерываний. Он представляет собой электрический сигнал, выставляемый на соответствующие шины процессора и несущий в себе информацию об определенном, закрепленном за данным устройством номере, который идентифицирует соответствующий обработчик прерываний. Этот вектор может быть фиксированным, конфигурируемым (например, с использованием переключателей) или программируемым. Операционная система может предусматривать процедуру регистрации вектора обработки прерываний для определенного устройства, которая связывает некоторую подпрограмму обработки прерываний с определенным вектором. При получении сигнала запроса прерывания процессор выполняет специальный цикл подтверждения прерывания, в котором устройство должно идентифицировать себя. В течение этого цикла устройство отвечает, выставляя на шину вектор прерываний. Затем процессор использует этот вектор для нахождения обработчика данного прерывания. Примером шины подключения внешних устройств, которая поддерживает векторные прерывания, является шина VMEbus.
При использовании опрашиваемых прерываний процессор получает от запросившего прерывание устройства только информацию об уровне приоритета прерывания (например, номере IRQ на шине ISA или номере IPL на шине SBus компьютеров SPARC). С каждым уровнем прерываний может быть связано несколько устройств и соответственно несколько программ — обработчиков прерываний. При возникновении прерывания процессор должен определить, какое устройство из тех, которые связаны с данным уровнем прерываний, действительно запросило прерывание. Это достигается вызовом всех обработчиков прерываний для данного уровня приоритета, пока один из обработчиков не подтвердит, что прерывание пришло от обслуживаемого им устройства. Если же с каждым уровнем прерываний связано только одно устройство, то определение нужной программы обработки прерывания происходит немедленно, как и при векторном прерывании. Опрашиваемые прерывания поддерживают шины ISA, EISA, MCA, PCI и Sbus.
Механизм прерываний некоторой аппаратной платформы может сочетать векторный и опрашиваемый типы прерываний. Типичным примером такой реализации является платформа персональных компьютеров на основе процессоров Intel Pentium. Шины PCI, ISA, EISA или MCA, используемые в этой платформе в качестве шин подключения внешних устройств, поддерживают механизм опрашиваемых прерываний. Контроллеры периферийных устройств выставляют на шину не вектор, а сигнал запроса прерывания определенного уровня IRQ. Однако в процессоре Pentium система прерываний является векторной. Вектор прерываний в процессор Pentium поставляет контроллер прерываний, который отображает поступающий от шины сигнал IRQ на определенный номер вектора.
Вектор прерываний, передаваемый в процессор, представляет собой целое число в диапазоне от 0 до 255, указывающее на одну из 256 программ обработки прерываний, адреса которых хранятся в таблице обработчиков прерываний. В том случае, когда к каждой линии IRQ подключается только одно устройство, процедура обработки прерываний работает так, как если бы система прерываний была чисто векторной, то есть процедура не выполняет никаких дополнительных опросов для выяснения того, какое именно устройство запросило прерывание. Однако при совместном использовании одного уровня IRQ несколькими устройствами программа обработки прерываний должна работать в соответствии со схемой опрашиваемых прерываний, то есть дополнительно выполнить опрос всех устройств, подключенных к данному уровню IRQ.
Механизм прерываний чаще всего поддерживает приоритезацию и маскирование прерываний. Приоритезация означает, что все источники прерываний делятся на классы и каждому классу назначается свой уровень приоритета запроса на прерывание. Приоритеты могут обслуживаться как относительные и абсолютные. Обслуживание запросов прерываний по схеме с относительными приоритетами заключается в том, что при одновременном поступлении запросов прерываний из разных классов выбирается запрос, имеющий высший приоритет. Однако в дальнейшем при обслуживании этого запроса процедура обработки прерывания уже не откладывается даже в том случае, когда появляются более приоритетные запросы — решение о выборе нового запроса принимается только в момент завершения обслуживания очередного прерывания. Если же более приоритетным прерываниям разрешается приостанавливать работу процедур обслуживания менее приоритетных прерываний, то это означает, что работает схема приоритезации с абсолютными приоритетами.
Если процессор (или компьютер, когда поддержка приоритезации прерываний вынесена во внешний по отношению к процессору блок) работает по схеме с абсолютными приоритетами, то он поддерживает в одном из своих внутренних регистров переменную, фиксирующую уровень приоритета обслуживаемого в данный момент прерывания. При поступлении запроса из определенного класса его приоритет сравнивается с текущим приоритетом процессора, и если приоритет запроса выше, то текущая процедура обработки прерываний вытесняется, а по завершении обслуживания нового прерывания происходит возврат к прерванной процедуре.
Упорядоченное обслуживание запросов прерываний наряду со схемами приоритетной обработки запросов может выполняться механизмом маскирования запросов. Собственно говоря, в описанной схеме абсолютных приоритетов выполняется маскирование — при обслуживании некоторого запроса все запросы с равным или более низким приоритетом маскируются, то есть не обслуживаются. Схема маскирования предполагает возможность временного маскирования прерываний любого класса независимо от уровня приоритета.
Обобщенно последовательность действий аппаратных и программных средств по обработке прерывания можно описать следующим образом.
1. При возникновении сигнала (для аппаратных прерываний) или условия (для внутренних прерываний) прерывания происходит первичное аппаратное распознавание типа прерывания. Если прерывания данного типа в настоящий момент запрещены (приоритетной схемой или механизмом маскирования), то процессор продолжает поддерживать естественный ход выполнения команд. В противном случае в зависимости от поступившей в процессор информации (уровень прерывания, вектор прерывания или тип условия внутреннего прерывания) происходит автоматический вызов процедуры обработки прерывания, адрес которой находится в специальной таблице операционной системы, размещаемой либо в регистрах процессора, либо в определенном месте оперативной памяти.
2. Автоматически сохраняется некоторая часть контекста прерванного потока, которая позволит ядру возобновить исполнение потока процесса после обработки прерывания. В это подмножество обычно включаются значения счетчика команд, слова состояния машины, хранящего признаки основных режимов работы процессора (пример такого слова — регистр EFLA6S в Intel Pentium), а также нескольких регистров общего назначения, которые требуются программе обработки прерывания. Может быть сохранен и полный контекст процесса, если ОС обслуживает данное прерывание со сменой процесса. Однако в общем случае это не обязательно, часто обработка прерываний выполняется без вытеснения текущего процесса1.
1 Решение о перепланировании процессов может быть принято в ходе обработки прерывания, например, если это прерывание от таймера и после наращивания значения системных часов выясняется, что процесс исчерпал выделенный ему квант времени. Однако это совсем не обязательно — прерывание может выполняться и без смены процесса, например прием очередной порции данных от контроллера внешнего устройства чаще всего происходит в рамках текущего процесса, хотя данные, скорее всего, предназначены другому процессу.
3. Одновременно с загрузкой адреса процедуры обработки прерываний в счетчик команд может автоматически выполняться загрузка нового значения слова состояния машины (или другой системной структуры, например селектора кодового сегмента в процессоре Pentium), которое определяет режимы работы процессора при обработке прерывания, в том числе работу в привилегированном режиме. В некоторых моделях процессоров переход в привилегированный режим за счет смены состояния машины при обработке прерывания является единственным способом смены режима. Прерывания практически во всех мультипрограммных ОС обрабатываются в привилегированном режиме модулями ядра, так как при этом обычно нужно выполнить ряд критических операций, от которых зависит жизнеспособность системы, — управлять внешними устройствами, перепланировать потоки и т. п.
4. Временно запрещаются прерывания данного типа, чтобы не образовалась очередь вложенных друг в друга потоков одной и той же процедуры. Детали выполнения этой операции зависят от особенностей аппаратной платформы, например может использоваться механизм маскирования прерываний. Многие процессоры автоматически устанавливают признак запрета прерываний в начале цикла обработки прерывания, в противном случае это делает программа обработки прерываний.
5. После того как прерывание обработано ядром операционной системы, прерванный контекст восстанавливается и работа потока возобновляется с прерванного места. Часть контекста восстанавливается аппаратно по команде возврата из прерываний (например, адрес следующей команды и слово состояния машины), а часть — программным способом, с помощью явных команд извлечения данных из стека. При возврате из прерывания блокировка повторных прерываний данного типа снимается.
13. Функции ОС по управлению памятью. Типы адресов: символьные, виртуальные и физические. Классификация алгоритмов распределения памяти. Понятие виртуальной памяти.
Управление памятью
Память является для процесса таким же важным ресурсом, как и процессор, так как процесс может выполняться процессором только в том случае, если его коды и данные (не обязательно все) находятся в оперативной памяти.
Управление памятью включает распределение имеющейся физической памяти между всеми существующими в системе в данный момент процессами, загрузку кодов и данных процессов в отведенные им области памяти, настройку адресно-зависимых частей кодов процесса на физические адреса выделенной области, а также защиту областей памяти каждого процесса.
Существует большое разнообразие алгоритмов распределения памяти. Они могут отличаться, например, количеством выделяемых процессу областей памяти (в одних случаях память выделяется процессу в виде одной непрерывной области, а в других — в виде нескольких несмежных областей), степенью свободы границы областей (она может быть жестко зафиксирована на все время существования процесса или же динамически перемещаться при выделении процессу дополнительных объемов памяти). В некоторых системах распределение памяти выполняется страницами фиксированного размера, а в других — сегментами переменной длины.
Одним из наиболее популярных способов управления памятью в современных операционных системах является так называемая виртуальная память. Наличие в ОС механизма виртуальной памяти позволяет программисту писать программу так, как будто в его распоряжении имеется однородная оперативная память большого объема, часто существенно превышающего объем имеющейся физической памяти. В действительности все данные, используемые программой, хранятся на диске и при необходимости частями (сегментами или страницами) отображаются в физическую память. При перемещении кодов и данных между оперативной памятью и диском подсистема виртуальной памяти выполняет трансляцию виртуальных адресов, полученных в результате компиляции и компоновки программы, в физические адреса ячеек оперативной памяти. Очень важно, что все операции по перемещению кодов и данных между оперативной памятью и дисками, а также трансляция адресов выполняются ОС прозрачно для программиста.
Защита памяти — это избиpaтeльнaя способность предохранять выполняемую задачу от записи или чтения памяти, назначенной другой задаче. Правильно написанные программы не пытаются обращаться к памяти, назначенной другим. Однако реальные программы часто содержат ошибки, в результате которых такие попытки иногда предпринимаются. Средства защиты памяти, реализованные в операционной системе, должны пресекать несанкционированный доступ процессов к чужим областям памяти.
Таким образом, функциями ОС по управлению памятью являются отслеживание свободной и занятой памяти; выделение памяти процессам и освобождение памяти при завершении процессов; защита памяти; вытеснение процессов из оперативной памяти на диск, когда размеры основной памяти недостаточны для размещения в ней всех процессов, и возвращение их в оперативную память, когда в ней освобождается место, а также настройка адресов программы на конкретную область физической памяти.
Типы адресов
Для идентификации переменных и команд на разных этапах жизненного цикла программы используются символьные имена (метки), виртуальные адреса и физические адреса (рис. 5.1).
§ Символьные имена присваивает пользователь при написании программы на алгоритмическом языке или ассемблере.
§ Виртуальные адреса, называемые иногда математическими, или логическими адресами, вырабатывает транслятор, переводящий программу на машинный язык. Поскольку во время трансляции в общем случае не известно, в какое место оперативной памяти будет загружена программа, то транслятор присваивает переменным и командам виртуальные (условные) адреса, обычно считая по умолчанию, что начальным адресом программы будет нулевой адрес.
§ Физические адреса соответствуют номерам ячеек оперативной памяти, где в действительности расположены' или будут расположены переменные и команды.
Совокупность виртуальных адресов процесса называется виртуальным адресным пространством. Диапазон возможных адресов виртуального пространства у всех процессов является одним и тем же. Например, при использовании 32-разрядных виртуальных адресов этот диапазон задается границами 0000000016и FFFFFFFF16. Тем не менее каждый процесс имеет собственное виртуальное адресное пространство — транслятор присваивает виртуальные адреса переменным и кодам каждой программе независимо (рис. 5.2).
Рис. 5.1. Типы адресов
Рис. 5.2. Виртуальные адресные пространства нескольких программ
Совпадение виртуальных адресов переменных и команд различных процессов не приводит к конфликтам, так как в том случае, когда эти переменные одновремеино присутствуют в памяти, операционная система отображает их на разные физические адреса1.
1 В том случае, когда необходимо, чтобы несколько процессов разделяли общие данные или коды, операционная система отображает соответствующие участки виртуального адресного пространства этих Процессов на один и тот же участок физической памяти. См. раздел «Разделяемые сегменты памяти»
В разных операционных системах используются разные способы структуризации виртуального адресного пространства. В одних ОС виртуальное адресное пространство процесса подобно физической памяти представлено в виде непрерывной линейной последовательности виртуальных адресов. Такую структуру адресного пространства называют также плоской (flat). При этом виртуальным адресом является единственное число, представляющее собой смещение относительно начала (обычно это значение 000...000) виртуального адресного пространства (рис. 5.3, а). Адрес такого типа называют линейным виртуальным адресом.
В других ОС виртуальное адресное пространство делится на части, называемые сегментами (или секциями, или областями, или другими терминами). В этом случае помимо линейного адреса может быть использован виртуальный адрес, представляющий собой пору чисел (и, т), где n определяет сегмент, а т — смещение внутри сегмента (рис. 5.3, б).
Существуют и более сложные способы структуризации виртуального адресного пространства, когда виртуальный адрес образуется тремя или даже более числами.
Рис. 5.3. Типы виртуальных адресных пространств: плоское (а), сегментированное (б)
Задачей операционной системы является отображение индивидуальных виртуальных адресных пространств всех одновременно выполняющихся процессов на общую физическую память. При этом ОС отображает либо все виртуальное адресное пространство, либо только определенную его часть. Процедура преобразования виртуальных адресов в физические должна быть максимально прозрачна для пользователя и программиста.
Существуют два принципиально отличающихся подхода к преобразованию виртуальных адресов в физические.
В первом случае замена виртуальных адресов на физические выполняется один раз для каждого процесса во время начальной загрузки программы в память. Специальная системная программа — перемещающий загрузчик — на основании имеющихся у нее исходных данных о начальном адресе физической памяти, в которую предстоит загружать программу, а также информации, предоставленной транслятором об адресно-зависимых элементах программы, выполняет загрузку программы, совмещая ее с заменой виртуальных адресов физическими.
Второй способ заключается в том, что программа загружается в память в неизмененном виде в виртуальных адресах, то есть операнды инструкций и адреса переходов имеют те значения, которые выработал транслятор. В наиболее простом случае, когда виртуальная и физическая память процесса представляют собой единые непрерывные области адресов, операционная система выполняет преобразование виртуальных адресов в физические по следующей схеме. При загрузке операционная система фиксирует смещение действительного расположения программного кода относительно виртуального адресного пространства. Во время выполнения программы при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический. Схема такого преобразования показана на рис. 5.4. Пусть, например, операционная система использует линейно-структурированное виртуальное адресное пространство и пусть некоторая программа, работающая под управлением этой ОС, загружена в физическую память начиная с физического адреса S. ОС запоминает значение начального смещения S и во время выполнения программы помещает его в специальный регистр процессора. При обращении к памяти виртуальные адреса данной программы преобразуются в физические путем прибавления к ним смещения S. Например, при выполнении инструкции MOV пересылки данных, находящихся по адресуVA, виртуальный адрес VA заменяется физическим адресом VA+S.
Рис. 5.4. Схема динамического преобразования адресов
Последний способ является более гибким: в то время как перемещающий загрузчик жестко привязывает программу к первоначально выделенному ей участку памяти, динамическое преобразование виртуальных адресов позволяет перемещать программный код процесса в течение всего периода его выполнения. Но использование перемещающего загрузчика более экономично, так как в этом случае преобразование каждого виртуального адреса происходит только один раз во время загрузки, а при динамическом преобразовании — при каждом обращении по данному адресу.
В некоторых случаях (обычно в специализированных системах), когда заранее точно известно, в какой области оперативной памяти будет выполняться программа, транслятор выдает исполняемый код сразу в физических адресах.
Необходимо различать максимально возможное виртуальное адресное пространство процесса и назначенное (выделенное) процессу виртуальное адресное пространство. В первом случае речь идет о максимальном размере виртуального адресного пространства, определяемом архитектурой компьютера, на котором работает ОС, и, в частности, разрядностью его схем адресации (32-битная, 64-битная и т. п.). Например, при работе на компьютерах с 32-разрядными процессорами Intel Pentium операционная система может предоставить каждому процессу виртуальное адресное пространство до 4 Гбайт (232). Однако это значение представляет собой только потенциально возможный размер виртуального адресного пространства, который редко на практике бывает необходим процессу. Процесс использует только часть доступного ему виртуального адресного пространства.
Назначенное виртуальное адресное пространство представляет собой набор виртуальных адресов, действительно нужных процессу для работы. Эти адреса первоначально назначает программе транслятор на основании текста программы, когда создает кодовый (текстовый) сегмент, а также сегмент или сегменты данных, с которыми программа работает. Затем при создании процесса ОС фиксирует назначенное виртуальное адресное пространство в своих системных таблицах. В ходе своего выполнения процесс может увеличить размер первоначального назначенного ему виртуального адресного пространства, запросив у ОС создания дополнительных сегментов или увеличения размера существующих. В любом случае операционная система обычно следит за корректностью использования процессом виртуальных адресов — процессу не разрешается оперировать с виртуальным адресом, выходящим за пределы назначенных ему сегментов.
Максимальный размер виртуального адресного пространства ограничивается только разрядностью адреса, присущей данной архитектуре компьютера, и, как правило, не совпадает с объемом физической памяти, имеющимся в компьютере.
Сегодня для машин универсального назначения типична ситуация, когда объем виртуального адресного пространства превышает доступный объем оперативной памяти. В таком случае операционная система для хранения данных виртуального адресного пространства процесса, не помещающихся в оперативную память, использует внешнюю память, которая в современных компьютерах представлена жесткими дисками (рис. 5,5, а). Именно на этом принципе основана виртуальная память — наиболее совершенный механизм, используемый в операционных системах для управления памятью.
Рис. 5.5. Соотношение объемов виртуального адресного пространства и физической памяти: виртуальное адресное пространство превосходит объем физической памяти (а), виртуальное адресное пространство меньше объема физической памяти (б)
Однако соотношение объемов виртуальной и физической памяти может быть и обратным. Так, в мини-компьютерах 80-х годов разрядности поля адреса нередко не хватало для того, чтобы охватить всю имеющуюся оперативную память. Несколько процессов могло быть загружено в память одновременно и целиком (рис. 5.5, б).
Необходимо подчеркнуть, что виртуальное адресное пространство и виртуальная память — это различные механизмы и они не обязательно реализуются в операционной системе одновременно. Можно представить себе ОС, в которой поддерживаются виртуальные адресные пространства для процессов, но отсутствует механизм виртуальной памяти. Это возможно только в том случае, если размер виртуального адресного пространства каждого процесса меньше объема физической памяти.
Содержимое назначенного процессу виртуального адресного пространства, то есть коды команд, исходные и промежуточные данные, а также результаты вычислений, представляет собой образ процесса.
Во время работы процесса постоянно выполняются переходы от прикладных кодов к кодам ОС, которые либо явно вызываются из прикладных процессов как системные функции, либо вызываются как реакция на внешние события или на исключительные ситуации, возникающие при некорректном поведении прикладных кодов. Для того чтобы упростить передачу управления от прикладного кода к коду ОС, а также для легкого доступа модулей ОС к прикладным данным (например, для вывода их на внешнее устройство), в большинстве ОС ее сегменты разделяют виртуальное адресное пространство с прикладными сегментами активного процесса. То есть сегменты ОС и сегменты активного процесса образуют единое виртуальное адресное пространство.
Обычно виртуальное адресное пространство процесса делится на две непрерывные части: системную и пользовательскую. В некоторых ОС (например, Windows NT, OS/2) эти части имеют одинаковый размер — по 2 Гбайт, хотя в принципе деление может быть и другим, например 1 Гбайт — для ОС, и 2 Гбайт — для прикладных программ1. Часть виртуального адресного пространства каждого процесса, отводимая под сегменты ОС, является идентичной для всех процессов. Поэтому при смене активного процесса заменяется только вторая часть виртуального адресного пространства, содержащая его индивидуальные сегменты, как правило, — коды и данные прикладной программы (рис. 5.6). Архитектура современных процессоров отражает эту особенность структуры виртуального адресного пространства, например, в процессорах Intel Pentium существует два типа системных таблиц: одна — для описания сегментов, общих для всех процессов, а другая — для описания индивидуальных сегментов данного процесса.
1 Деление виртуального адресного пространства на две непрерывные области не является обязательным — можно представить себе ОС, которая обходится без него и чередует свои сегменты и сегменты прикладных программ, размещая их в виртуальном адресном пространстве в произвольном порядке.
При смене процесса первая таблица остается неизменной, а вторая заменяется новой.
Рис. 5.6. Общая и индивидуальные части виртуальных адресных пространств
Описанное выше назначение двух частей виртуального адресного пространства — для сегментов ОС и для сегментов прикладной программы — является типичным, но не абсолютным. Имеются и исключения из общего правила. В некоторых ОС существуют системные процессы, порожденные для решения внутренних задач ОС. В этих процессах Отсутствуют сегменты прикладной программы, по они могут расположить некоторые свои сегменты (сегменты ОС) в общей части виртуального адресного пространства, а некоторые — в индивидуальной части, обычно предназначенной для прикладных сегментов. И наоборот, в общей, системной части виртуального адресного пространства размещаются сегменты прикладного кода, предназначенные для совместного использования несколькими прикладными процессами.
Механизм страничной памяти в большинстве универсальных операционных систем применяется ко всем сегментам пользовательской части виртуального адресного пространства процесса. Исключения могут составлять специализированные ОС, например ОС реального времени, в которых некоторые сегменты жестко фиксируются в оперативной памяти и соответственно никогда не выгружаются на диск — это обеспечивает быструю реакцию определенных приложений на внешние события.
Системная часть виртуальной памяти в ОС любого типа включает область, подвергаемую страничному вытеснению (paged), и область, на которую страничное вытеснение не распространяется (non-paged). В не вытесняемой области размещаются модули ОС, требующие быстрой реакции и/или постоянного присутствия в памяти, например диспетчер потоков или код, который управляет заменой страниц памяти. Остальные модули ОС подвергаются страничному вытеснению, как и пользовательские сегменты.
Обычно аппаратура накладывает свои ограничения на порядок использования виртуального адресного пространства. Некоторые процессоры (например, MIPS) предусматривают для определенной области системной части адресного пространства особые правила отображения на физическую память. При этом виртуальный адрес прямо отображается на физический адрес (последний либо полностью соответствует виртуальному адресу, либо равен его части). Такая особая область памяти не подвергается страничному вытеснению, и поскольку достаточно трудоемкая процедура преобразования адресов исключается, то доступ к располагаемым здесь кодам и данным осуществляется очень быстро.
14. Методы распределения памяти с использованием дискового пространства. Страничное распределение. Сегментное распределение. Странично-сегментное распределение.