По скорости передачи
низкоскоростные (до 10 Мбит/с),
среднескоростные (до 100 Мбит/с),
высокоскоростные (свыше 100 Мбит/с);
По сетевым операционным системам
На основе Windows
На основе UNIX
На основе NetWare
На основе Cisco
Топология - это конфигурация сети, способ соединения элементов сети (то есть компьютеров) друг с другом. Чаще всего встречаются три способа объединения компьютеров в локальную сеть: "звезда", "общая шина" и "кольцо".
Соединение типа "звезда". Каждый компьютер через специальный сетевой адаптер подключается отдельным кабелем к объединяющему устройству. При необходимости можно объединить вместе несколько сетей с топологией "звезда", при этом конфигурация сети получается разветвленной.
Достоинства: При соединении типа "звезда" легко искать неисправность в сети.
Недостатки: Соединение не всегда надежно, поскольку выход из строя центрального узла может привести к остановке сети.
Соединение "общая шина". Все компьютеры сети подключаются к одному кабелю; этот кабель используется совместно всеми рабочими станциями по очереди. При таком типе соединения все сообщения, посылаемые каждым отдельным компьютером, принимаются всеми остальными компьютерами в сети.
Достоинства: в топологии "общая шина" выход из строя отдельных компьютеров не приводит всю сеть к остановке.
Недостатки: несколько труднее найти неисправность в кабеле и при обрыве кабеля (единого для всей сети) нарушается работа всей сети.
Соединение типа "кольцо". Данные передаются от одного компьютера к другому; при этом если один компьютер получает данные, предназначенные для другого компьютера, то он передает их дальше (по кольцу).
Достоинства: балансировка нагрузки, возможность и удобство прокладки кабеля.
Недостатки: физические ограничения на общую протяженность сети.
От схемы зависит состав оборудования и программного обеспечения. Топологию выбирают, исходя из потребностей предприятия. Если предприятие занимает многоэтажное здание, то в нем может быть применена схема "снежинка", в которой имеются файловые серверы для разных рабочих групп и один центральный сервер для всего предприятия.
29. Интернет – история и современность.
Интернет — всемирная система объединённых компьютерных сетей для хранения и передачи информации. Часто упоминается как Всемирная сеть и Глобальная сеть, а также просто Сеть[2]. Построена на базе стека протоколов TCP/IP. На основе Интернета работает Всемирная паутина (World Wide Web, WWW) и множество других систем передачи данных.
В 1957 году, после запуска Советским Союзом первого искусственного спутника Земли, Министерство обороны СШАпосчитало[источник не указан 198 дней], что на случай войны Америке нужна надёжная система передачи информации. Агентство по перспективным оборонным научно-исследовательским разработкам США (DARPA) предложило разработать для этого компьютерную сеть. Разработка такой сети была поручена Калифорнийскому университету в Лос-Анджелесе, Стэнфордскому исследовательскому центру,Университету Юты и Университету штата Калифорния в Санта-Барбаре. Компьютерная сеть была названа ARPANET (англ. Advanced Research Projects Agency Network), и в 1969 году в рамках проекта сеть объединила четыре указанных научных учреждения. Все работы финансировались Министерством обороны США. Затем сеть ARPANET начала активно расти и развиваться, её начали использовать учёные из разных областей науки.
Первый сервер ARPANET был установлен 2 сентября 1969 года в Калифорнийском университете (Лос-Анджелес). Компьютер Honeywell DP-516 имел 24 Кб оперативной памяти[7].
29 октября 1969 года в 21:00 между двумя первыми узлами сети ARPANET, находящимися на расстоянии в 640 км — в Калифорнийском университете Лос-Анджелеса (UCLA) и в Стэнфордском исследовательском институте (SRI) — провели сеанс связи. Чарли Клайн (Charley Kline) пытался выполнить удалённое подключение из Лос-Анджелеса к компьютеру в Стэнфорде. Успешную передачу каждого введённого символа его коллега Билл Дювалль (Bill Duvall) из Стэнфорда подтверждал потелефону.
В первый раз удалось отправить всего три символа «LOG», после чего сеть перестала функционировать. LOG должно было быть словом LOGIN(команда входа в систему). В рабочее состояние систему вернули уже к 22:30, и следующая попытка оказалась успешной. Именно эту дату можно считать днём рождения Интернета.[8]
К 1971 году была разработана первая программа для отправки электронной почты по сети. Эта программа сразу стала очень популярна.
В 1973 году к сети были подключены через трансатлантический телефонный кабель первые иностранные организации из Великобритании и Норвегии, сеть стала международной.
В 1970-х годах сеть в основном использовалась для пересылки электронной почты, тогда же появились первые списки почтовой рассылки, новостные группы и доски объявлений. Однако в то время сеть ещё не могла легко взаимодействовать с другими сетями, построенными на других технических стандартах. К концу 1970-х годов начали бурно развиваться протоколы передачи данных, которые были стандартизированы в 1982—1983 годах. Активную роль в разработке и стандартизации сетевых протоколов играл Джон Постел. 1 января1983 года сеть ARPANET перешла с протокола NCP на TCP/IP, который успешно применяется до сих пор для объединения (или, как ещё говорят, «наслоения») сетей. Именно в 1983 году термин «Интернет» закрепился за сетью ARPANET.
В 1984 году была разработана система доменных имён (англ. Domain Name System, DNS).
В 1984 году у сети ARPANET появился серьёзный соперник: Национальный научный фонд США (NSF) основал обширную межуниверситетскую сеть NSFNet (англ. National Science Foundation Network), которая была составлена из более мелких сетей (включая известные тогда сети Usenet и Bitnet) и имела гораздо бо́льшую пропускную способность, чем ARPANET. К этой сети за год подключились около 10 тыс. компьютеров, название «Интернет» начало плавно переходить к NSFNet.
В 1988 году был разработан протокол Internet Relay Chat (IRC), благодаря чему в Интернете стало возможно общение в реальном времени (чат).
В 1989 году в Европе, в стенах Европейского совета по ядерным исследованиям (ЦЕРН) родилась концепция Всемирной паутины. Её предложил знаменитый британский учёный Тим Бернерс-Ли, он же в течение двух лет разработал протокол HTTP, язык HTML и идентификаторы URI.
В 1990 году сеть ARPANET прекратила своё существование, полностью проиграв конкуренцию NSFNet. В том же году было зафиксировано первое подключение к Интернету по телефонной линии (т. н. «дозво́н», англ. dialup access).
В 1991 году Всемирная паутина стала общедоступна в Интернете, а в 1993 году появился знаменитый веб-браузер NCSA Mosaic. Всемирная паутина набирала популярность.
В 1995 году NSFNet вернулась к роли исследовательской сети, маршрутизацией всего трафика Интернета теперь занимались сетевые провайдеры, а не суперкомпьютерыНационального научного фонда.
В том же 1995 году Всемирная паутина стала основным поставщиком информации в Интернете, обогнав по трафику протокол пересылки файлов FTP. Был образован Консорциум Всемирной паутины (W3C). Можно сказать, что Всемирная паутина преобразила Интернет и создала его современный облик. С 1996 года Всемирная паутина почти полностью подменяет собой понятие «Интернет».
В 1990-е годы Интернет объединил в себе большинство существовавших тогда сетей (хотя некоторые, как Фидонет, остались обособленными). Объединение выглядело привлекательным благодаря отсутствию единого руководства, а также благодаря открытости технических стандартов Интернета, что делало сети независимыми от бизнеса и конкретных компаний. К 1997 году в Интернете насчитывалось уже около 10 млн компьютеров, было зарегистрировано более 1 млн доменных имён. Интернет стал очень популярным средством для обмена информацией.
В настоящее время подключиться к Интернету можно через спутники связи, радио-каналы, кабельное телевидение, телефон, сотовую связь, специальные оптико-волоконные линии или электропровода. Всемирная сеть стала неотъемлемой частью жизни в развитых и развивающихся странах.
В течение пяти лет Интернет достиг аудитории свыше 50 миллионов пользователей. Другим средствам коммуникации требовалось гораздо больше времени для достижения такой популярности.
30. Модель взаимодействия открытых систем ISO/OSI.
В 1984 году Международной Организацией по Стандартизации (International Standard Organization, ISO) была разработана модель взаимодействия открытых систем (Open Systems Interconnection, OSI). Модель представляет собой международный стандарт для проектирования сетевых коммуникаций и предполагает уровневый подход к построению сетей. Каждый уровень модели обслуживает различные этапы процесса взаимодействия. Посредством деления на уровни сетевая модель OSI упрощает совместную работу оборудования и программного обеспечения. Модель OSI разделяет сетевые функции на семь уровней: прикладной, уровень представления, сессионный, транспортный, сетевой, канальный и физический.
Ниже дается краткая характеристика уровней модели:
Физический уровень (Physical layer) определяет способ физического соединения компьютеров в сети. Функциями средств, относящихся к данному уровню, являются побитовое преобразование цифровых данных в сигналы, передаваемые по физической среде (например, по кабелю), а также собственно передача сигналов.
Канальный уровень(Data Link layer) отвечает за организацию передачи данных между абонентами через физический уровень, поэтому на данном уровне предусмотрены средства адресации, позволяющие однозначно идентифицировать отправителя и получателя во всем множестве абонентов, подключенных к обще линии связи. В функции данного уровня также входит упорядочивание передачи с целью параллельного использования одной линии связи несколькими парами абонентов. Кроме того, средства канального уровня обеспечивают проверку ошибок, которые могут возникать при передаче данных физическим уровнем.
Сетевой уровень(Network layer) обеспечивает доставку данных между компьютерами сети, представляющей собой объединение различных физических сетей. Данный уровень предполагает наличие средств логической адресации, позволяющих однозначно идентифицировать компьютер в объединенной сети. Одной из главных функций, выполняемых средствами данного уровня, является целенаправленная передача данных конкретному получателю.
Транспортный уровень(Transport layer) реализует передачу данных между двумя программами, функционирующими на разных компьютерах, обеспечивая при этом отсутствие потерь и дублирования информации, которые могут возникать в результате ошибок передачи нижних уровней. В случае, если данные, передаваемые через транспортный уровень, подвергаются фрагментации, то средства данного уровня гарантируют сборку фрагментов в правильном порядке.
Сессионный (или сеансовый) уровень (Session layer) позволяет двум программам поддерживать продолжительное взаимодействие по сети, называемое сессией (session) или сеансом. Этот уровень управляет установлением сеанса, обменом информацией и завершением сеанса. Он также отвечает за идентификацию, позволяя тем самым только определенным абонентам принимать участие в сеансе, и обеспечивает работу служб безопасности с целью упорядочивания доступа к информации сессии.
Уровень представления(Presentation layer) осуществляет промежуточное преобразование данных исходящего сообщения в общий формат, который предусмотрен средствами нижних уровней, а также обратное преобразование входящих данных из общего формата в формат, понятный получающей программе.
Прикладной уровень (Application layer) предоставляет высокоуровневые функции сетевого взаимодействия, такие, как передача файлов, отправка сообщений по электронной почте и т.п.
31-32. Адресация в Интернете. IP-адреса. Доменная система имен.
1. Что такое IP-адрес и зачем он нужен.
Для того, чтобы маршрутизаторы могли определять куда направлять каждый конкретный пакет информации, передаваемый по сети, в заголовке каждого пакета обязательно указывается адрес отправителя и адрес получателя пакета.
Адреcация в сети Интернет организована очень просто. Каждой точке подключения любого устройства к сети (интерфейсу), присваивается уникальный номер, который и называют – IP-адресом.
Необходимо подчеркнуть, что IP-адрес присваивается не устройству (компьютеру или маршрутизатору), а именно интерфейсу, поскольку многие устройства могут иметь несколько точек подключения к сети, а следовательно и несколько различных IP-адресов.
Компьютеры и маршрутизаторы «знают» свои IP-адреса, и адреса своих «соседей в сети», а маршрутизаторы еще и могут определять с помощью таблиц маршрутизации, куда направлять пакеты со всеми прочими IP-адресами.
Для программно-аппаратных устройств IP-адрес это просто целое число для хранения которого выделяется ровно 4 байта памяти. Т.е. число в диапазоне от 0 до 4294967295. Человеку запоминать такие громоздкие числа сложно. Поэтому для наглядности, IP-адрес записывается в виде последовательность четырех чисел разделенных точками в диапазоне от 0.0.0.0 до 255.255.255.255. Каждое из этих четырех чисел соответствует значению отдельно каждого байта из тех четырех, в котором хранится все число.
2. Что такое IP-сети и маски подсетей.
Для обеспечения правильности работы маршрутизаторов и коммутаторов в сети, IP-адреса распределяются между интерфейсами не произвольно, а, как правило, группами, называемыми сетями или подсетями. Причем IP-адреса могут группироваться в сети и подсети только по строго определенным правилам.
Количество IP-адресов (размер) в любой подсети всегда должно быть кратно степени числа 2. То есть – 4, 8, 16, 32 и т.д. Других размеров подсетей быть не может. Причем, первым адресом подсети должен быть такой адрес, последнее (из четырех) чисел которого должно делиться без остатка на размер сети.
При использовании любой IP-сети нужно всегда помнить, что первый и последний адреса подсети – служебные и использовать их в качестве IP-адресов интерфейсов нельзя.
Для сокращения и упрощения описания подсетей, существует понятие «маска подсети». Маска указывает на размер подсети и может быть описана двумя вариантами записи – коротким и длинным.
3. Доменное имя.
Доменное имя — это имя, служащее для идентификации областей — единиц административной автономии в сети Интернет — в составе вышестоящей по иерархии такой области. Каждая из таких областей называется доме́ном. Общее пространство имён Интернета функционирует благодаря DNS — системе доменных имён. Доменные имена дают возможность адресации интернет-узлов и расположенных на них сетевых ресурсов (веб-сайтов, серверов электронной почты, других служб) в удобной для человека форме.
Полное доменное имя состоит из непосредственного имени домена и далее имён всех доменов, в которые он входит, разделённых точками. Например, полное имя "ru.wikipedia.org" обозначает домен третьего уровня "ru", который входит в домен второго уровня "wikipedia", который входит в домен верхнего уровня "org", который входит в безымянный корневой домен "."(точка). В обыденной речи под доменным именем нередко понимают именно полное доменное имя.
33. Службы Интернета: терминальный режим и электронная почта.
Терминальный режим работы — организация сетевой работы информационной системы (ИС) посредством размещения всех пользовательских приложений и данных на центральном сервере (серверах), доступ к которым осуществляется с машин-терминалов (см. также рабочая станция, рабочий терминал, «тонкий клиент»), изготовленных в упрощённом исполнении и, как следствие, более дешёвых, занимающих минимум места, бесшумных и практически не требующих обслуживания.
Терминальный режим работы кроме снижения стоимости ИС, программного обеспечения и расходов на обслуживание, позволяет обеспечить более высокий уровень безопасности и простоту масштабирования ИС.
Электро́нная почта— технология и предоставляемые ею услуги по пересылке и получению электронных сообщений (называемых «письма» или «электронные письма») по распределённой (в том числе глобальной) компьютерной сети.
Электронная почта по составу элементов и принципу работы практически повторяет систему обычной (бумажной) почты, заимствуя как термины (почта, письмо, конверт, вложение, ящик, доставка и другие), так и характерные особенности — простоту использования, задержки передачи сообщений, достаточную надёжность и в то же время отсутствие гарантии доставки.
34. Служба Интернета WWW. Веб-браузеры.
Службы Интернета
Благодаря использованию различных сетевых протоколов Интернет может обеспечить выполнение двух основных функций:
· быть средством общения между удаленными пользователями;
· быть средством доступа к общим информационным ресурсам, размещенным в Интернете.
Очевидно, что каждая из этих функций может быть реализована с помощью различных средств, что обеспечивает многообразие услуг, предоставляемых пользователям Интернета. Средства обеспечения определенных услуг для пользователей глобальной сети принято называть службами Интернета. При этом коммуникационные службы обеспечивают общение между удаленными пользователями, а информационные - дают возможность пользователям получить доступ к определенным информационным ресурсам, хранящимся в Интернете.
Веб-обозрева́тель, обозрева́тель, бра́узер или бра́узэр — программное обеспечение для просмотра веб-сайтов, то есть для запроса веб-страниц (преимущественно из Сети), их обработки, вывода и перехода от одной страницы к другой. Многие современные браузеры также могут загружать файлы с FTP-серверов.
Браузеры постоянно развивались со времени зарождения Всемирной паутины и с её ростом становились всё более востребованными программами. Ныне браузер — комплексное приложение для обработки и вывода разных составляющих веб-страницы и для предоставления интерфейса между веб-сайтом и его посетителем. Практически все популярные браузеры распространяются бесплатно или «в комплекте» с другими приложениями: Internet Explorer (совместно с Microsoft Windows), Mozilla Firefox (бесплатно, свободное ПО, совместно с многими дистрибутивами Linux, например, Ubuntu), Safari (совместно с Mac OS X и бесплатно для Microsoft Windows), Google Chrome (бесплатно), Opera (бесплатно, начиная с версии 8.5).
35. Информационная безопасность и ее составляющие Методы защиты информации. Организационные меры защиты информации.
Методы обеспечения безопасности информации в ИС:
· препятствие;
· управление доступом;
· механизмы шифрования;
· противодействие атакам вредоносных программ;
· регламентация;
· принуждение;
· побуждение.
Препятствие – метод физического преграждения пути злоумышленнику к защищаемой информации (к аппаратуре, носителям информации и т.д.).
Управление доступом – методы защиты информации регулированием использования всех ресурсов ИС и ИТ. Эти методы должны противостоять всем возможным путям несанкционированного доступа к информации.
Управление доступом включает следующие функции зашиты:
· идентификацию пользователей, персонала и ресурсов системы (присвоение каждому объекту персонального идентификатора);
· опознание (установление подлинности) объекта или субъекта по предъявленному им идентификатору;
· проверку полномочий (проверка соответствия дня недели, времени суток, запрашиваемых ресурсов и процедур установленному регламенту);
· разрешение и создание условий работы в пределах установленного регламента;
· регистрацию (протоколирование) обращений к защищаемым ресурсам;
· реагирование (сигнализация, отключение, задержка работ, отказ в запросе и т.п.) при попытках несанкционированных действий.
Механизмы шифрования – криптографическое закрытие информации. Эти методы защиты все шире применяются как при обработке, так и при хранении информации на магнитных носителях. При передаче информации по каналам связи большой протяженности этот метод является единственно надежным.
Противодействие атакам вредоносных программ предполагает комплекс разнообразных мер организационного характера и использование антивирусных программ. Цели принимаемых мер – это уменьшение вероятности инфицирования АИС, выявление фактов заражения системы; уменьшение последствий информационных инфекций, локализация или уничтожение вирусов; восстановление информации в ИС. Овладение этим комплексом мер и средств требует знакомства со специальной литературой.
Регламентация – создание таких условий автоматизированной обработки, хранения и передачи защищаемой информации, при которых нормы и стандарты по защите выполняются в наибольшей степени.
Принуждение – метод защиты, при котором пользователи и персонал ИС вынуждены соблюдать правила обработки, передачи и использования защищаемой информации под угрозой материальной, административной или уголовной ответственности.
Побуждение – метод защиты, побуждающий пользователей и персонал ИС не нарушать установленные порядки за счет соблюдения сложившихся моральных и этических норм.
Вся совокупность технических средств подразделяется на аппаратные и физические.
Аппаратные средства – устройства, встраиваемые непосредственно в вычислительную технику, или устройства, которые сопрягаются с ней по стандартному интерфейсу.
Физические средства включают различные инженерные устройства и сооружения, препятствующие физическому проникновению злоумышленников на объекты защиты и осуществляющие защиту персонала (личные средства безопасности), материальных средств и финансов, информации от противоправных действий. Примеры физических средств: замки на дверях, решетки на окнах, средства электронной охранной сигнализации и т.п.
Программные средства – это специальные программы и программные комплексы, предназначенные для защиты информации в ИС. Как отмечалось, многие из них слиты с ПО самой ИС.
Из средств ПО системы защиты выделим еще программные средства, реализующие механизмы шифрования (криптографии). Криптография – это наука об обеспечении секретности и/или аутентичности (подлинности) передаваемых сообщений.
Организационные средства осуществляют своим комплексом регламентацию производственной деятельности в ИС и взаимоотношений исполнителей на нормативно-правовой основе таким образом, что разглашение, утечка и несанкционированный доступ к конфиденциальной информации становится невозможным или существенно затрудняется за счет проведения организационных мероприятий. Комплекс этих мер реализуется группой информационной безопасности, но должен находиться под контролем первого руководителя.
Законодательные средства защиты определяются законодательными актами страны, которыми регламентируются правила пользования, обработки и передачи информации ограниченного доступа и устанавливаются меры ответственности за нарушение этих правил.
Морально-этические средства защиты включают всевозможные нормы поведения (которые традиционно сложились ранее), складываются по мере распространения ИС и ИТ в стране и в мире или специально разрабатываются. Морально-этические нормы могут быть неписаные (например честность) либо оформленные в некий свод (устав) правил или предписаний. Эти нормы, как правило, не являются законодательно утвержденными, но поскольку их несоблюдение приводит к падению престижа организации, они считаются обязательными для исполнения. Характерным примером таких предписаний является Кодекс профессионального поведения членов Ассоциации пользователей ЭВМ США.
Организационная защита информации — это регламентация деятельности и взаимоотношений исполнителей на нормативно-правовой основе, исключающей или существенно затрудняющей неправомерное овладение конфиденциальной информацией и проявление внутренних и внешних угроз. Организационная защита обеспечивает:
- организацию охраны, режима, работу с кадрами, с документами;
- использование технических средств безопасности и информационно-аналитическую деятельность по выявлению внутренних и внешних угроз предпринимательской деятельности.
Организационная защита включает в себя регламентацию:
1) Формирования и организации деятельности службы безопасности, обеспечения деятельности этих служб нормативно-методическими документами по организации защиты информации.
2) Составления и регулярного обновления состава защищаемой информации компании, составления и ведения перечня защищаемых бумажных и электронных документов.
3) Разрешительной системы разграничения доступа персонала к защищаемой информации.
4) Методов отбора персонала для работы с защищаемой информацией, методики обучения и инструктирования сотрудников.
5) Направлений и методов воспитательной работы с персоналом, контроля соблюдения сотрудниками порядка защиты информации.
6) Технологии защиты, обработки и хранения бумажных и электронных документов.
7) Порядка защиты ценной информации компании от случайных или умышленных несанкционированных действий персонала.
8) Ведения всех видов аналитической работы.
9) Порядка защиты информации при проведении совещаний, заседаний, переговоров, приеме посетителей, работе с представителями СМИ.
10) Оборудования и аттестации помещений и рабочих зон, выделенных для работы с конфиденциальной информацией.
11) Пропускного режима на территории, в здании, помещениях, идентификации транспорта и персонала компании.
12) Системы охраны территории.
13) Действий персонала в экстремальных ситуациях.
14) Организационных вопросов приобретения, установки и эксплуатации технических средств защиты информации и охраны.
15) Работы по управлению системой защиты информации.
16) Критериев и порядка проведения оценочных мероприятий по установлению степени эффективности системы защиты информации.
Система организационных мер по защите информации представляют собой комплекс мероприятий, включающих четыре основных компонента:
— изучение обстановки на объекте;
— разработку программы защиты;
— деятельность по проведению указанной программы в жизнь;
— контроль за ее действенностью и выполнением установленных правил.
Выделяют следующие организационные мероприятия:
— ознакомление с сотрудниками, их изучение, обучение правилам работы с конфиденциальной информацией, ознакомление с мерами ответственности за нарушение правил защиты информации и др.;
— организация надежной охраны помещений и территории прохождения линии связи;
— организация, хранения и использования документов и носителей конфиденциальной информации, включая порядок учета, выдачи, исполнения и возвращения;
— создание штатных организационных структур по защите ценной информации или назначение ответственного за защиту информации на конкретных этапах еѐ обработки и передачи;
— создание особого порядка взаимоотношений со сторонними организациями и партнерами;
— организация конфиденциального делопроизводства.
Организационные мероприятия играют существенную роль в создании надежного механизма защиты информации, так как возможности несанкционированного использования конфиденциальных сведений в значительной мере обусловливаются не техническими аспектами, а злоумышленными действиями, нерадивостью, небрежностью и халатностью пользователей или персонала защиты. Влияния этих аспектов практически невозможно избежать с помощью технических средств. Для этого необходима совокупность организационно-правовых и организационно-технических мероприятий, которые исключали бы (или, по крайней мере, сводили бы к минимуму) возможность возникновения опасности конфиденциальной информации.
36.Антивирусные средства. Классификация и характеристики компьютерных вирусов. Методы защиты от компьютерных вирусов.
Антивирусная программа (антивирус) — специализированная программа для обнаружения компьютерных вирусов, а также нежелательных (считающихся вредоносными) программ вообще и восстановления заражённых (модифицированных) такими программами файлов, а также для профилактики — предотвращения заражения (модификации) файлов или операционной системы вредоносным кодом.
Вирусы можно разделить на классы по следующим основным признакам:
среда обитания;
операционная система (OC);
особенности алгоритма работы;
деструктивные возможности.
По СРЕДЕ ОБИТАНИЯ вирусы можно разделить на:
файловые;
загрузочные;
макро;
сетевые.
По ДЕСТРУКТИВНЫМ ВОЗМОЖНОСТЯМ вирусы можно разделить на:
безвредные, т.е. никак не влияющие на работу компьютера (кроме уменьшения свободной памяти на диске в результате своего распространения);
неопасные, влияние которых ограничивается уменьшением свободной памяти на диске и графическими, звуковыми и пр. эффектами;
опасные вирусы, которые могут привести к серьезным сбоям в работе компьютера;
очень опасные, в алгоритм работы которых заведомо заложены процедуры, которые могут привести к потере программ, уничтожить данные, стереть необходимую для работы компьютера информацию, записанную в системных областях памяти, и даже, как гласит одна из непроверенных компьютерных легенд, способствовать быстрому износу движущихся частей механизмов - вводить в резонанс и разрушать головки некотоорых типов винчестеров.
Каким бы не был вирус, пользователю необходимо знать основные методы защиты от компьютерных вирусов.
Для защиты от вирусов можно использовать:
общие средства защиты информации, которые полезны также и как страховка от физической порчи дисков,неправильно работающих программ или ошибочных действий пользователя;
профилактические меры, позволяющие уменьшить вероятность заражения вирусом;
специализированные программы для защиты от вирусов.
Общие средства защиты информации полезны не только для защиты от вирусов. Имеются две основные разновидности этих средств:
копирование информации - создание копий файлов и системных областей дисков;
разграничение доступа предотвращает несанкционированное использование информации, в частности, защиту от изменений программ и данных вирусами, неправильно работающими программами и ошибочными действиями пользователей.
Несмотря на то, что общие средства защиты информации очень важны для защиты от вирусов, все же их недостаточно. Необходимо и применение специализированных программ для защиты от вирусов. Эти программы можно разделить на несколько видов: детекторы, доктора (фаги), ревизоры, доктора-ревизоры, фильтры и вакцины (иммунизаторы).