Вопрос 21.Оценка полезности

Для упрощения дальнейшего изложения разобьем всю процедуру оценки функций полезности на пять этапов:

1) предварительный анализ для фактической оценки;2) определение соответствующих качественных параметров;3) формирование количественных ограничений;4) выбор функции полезности; 5) проверка на согласованность.

3.1. Предварительные процедуры для фактической оценки полезности

Оценка функций полезности, по-видимому, скорее искусство, чем наука. Успех в данной области тесно связан со способностью исследователя вступать в контакт с лицом, принимающим решение. Исследователь должен доказать этому лицу важность таких оценок, заручиться его поддержкой и сделать удобной процеду­ру оценивания.

3.2. Определение соответствующих качественных параметров

Нас интересуют такие качественные характеристики, как монотонность и отношение лица, принимающего решение, к риску. Достаточно просто можно установить, выполняется ли условие монотонности. Спросим лицо, принимающее решение, что оно больше предпочитает: х1 или x2 (где x2>x1). Вероятно, эксперт ожидал бы ответа на этот вопрос, основываясь на собственной оценке исходов (последствий). Если x2 предпочтительнее, то он склонился бы к мнению, что предпочтения монотонно возрастают на множестве свойств (признаков) X. А затем (чтобы окончательно удостовериться) ему следует спросить, всегда ли большее значение х предпочтительнее меньшего.

Допустим, что предпочтения монотонно возрастают в X, как, например, предполагается в случае прибыли. Тогда будем говорить, что некий субъект уклоняется от риска, если для любых значений х1 и x2 сумма (х1+x2)/2 предпочтительнее лотереи , которая имеет исходы х1 и x2 с одинаковой вероятностью. Отметим, что величина (х1+x2)/2 представляет собой математическое ожидание лотереи L (в противоположность полезности). Кроме того, будем говорить, что субъект стремится к риску, если он предпочитает лотерею Li по сравнению с величиной (х1+x2)/2 при всех значениях х1 и x2. И наконец, субъект безразличен (нейтрален) к риску, если ему безразлично, что он получит: лотерею L или величину (х1+x2)/2 для любых х1 и x2. Приведенные характеристики отношения к риску удобно использовать для описания областей и функций полезности (рис. 3.1).


Функция полезности вогнута, выпукла или линейна соответственно, если лицо, принимающее решение, уклоняется от риска, стремится к нему или безразлично.

Рис. 3.1 Отношение к риску.

Для выяснения отношения к риску можно разделить область возможных значений Х на четыре равные части с исходами, обозначаемыми через x0, х1, x2, x3 и х4. Затем следует спросить у лица, принимающего решение, что для него предпочтительнее: лотереи , или соответствующие математические ожидания данных лотерей . Если все ответы демонстрируют одно и то же отношение к риску, то следует предположить, что такое отношение к риску у данного лица преобладает.

Существуют более тонкие характеристики риска, для описания которых требуется понятие гарантированного эквивалента. Гарантированным эквивалентом лотереи называет­ся величина , которую лицо, принимающее решение, считает равноценной L. Премия за риск определяется как математическое ожидание выигрыша минус гарантированный эквивалент.

Предположим, что лицо, принимающее решение, уклоняется от риска, а и r— гарантированный эквивалент и премия за риск соответственно для лотереи , где h — положительная величина. Тогда, очевидно, . Говорят, что имеет место постоянное уклонение от риска, если премия за риск в лотерее L не зависит от величины x1. В этом случае при возрастании х1 на некоторую величину k гарантированный эквивалент должен увеличиться на ту же величину k. Как показано в работе [59], если наблюдается постоянное уклонение от риска, то функция полезности будет иметь вид

, (3.1)

где а и b — произвольный набор скалярных констант.

3.4. Выбор функции полезности

Предположим, что можно найти некоторое параметрическое семейство функций полезности, которые обладают определенными заранее установленными свойствами. Обозначим такое семейство функций полезности через , где — параметры. Тогда выбор соответствующей функции полезности сводится к выбору значений параметров. Используя параметрическую форму записи и предыдущие оцен­ки отдельных частей кривой полезности [например, (2.6)], можно записать уравнение

, (3.6)

где число неизвестных равно числу параметров. Используя значения гарантированных эквивалентов, полученных экспертным путем, запишем столько уравнений, сколько неизвестных, и раз­решим их относительно параметров, чтобы иметь возможность построить функцию полезности, как показано на рис. 3.1.

Для проверки внутренней совместимости смешанного набора качественных и количественных ограничений, налагаемых на функцию полезности, разработан метод, описанный в [52]. 3.5. Проверка на согласованность.

Одна из наиболее общих и существенных ошибок, которые обыч­но делаются при оценке функций полезности, связана с подбором параметров при использовании очень узких диапазонов изменения гарантированных эквивалентов лотерей. Например, предположим, что лицо, принимающее решение, считает гарантированный экви­валент лотереи L(200, ,0) равным 80, и пусть функция полезности для стратегии постоянного уклонения от риска определяется, исходя из этого. Экстраполяция гарантированного эквивалента, основанная на результирующей функции полезности, даст зна­чение гарантированного эквивалента для лотереи L(1000, ,0), которое будет много меньше, чем эмпирическая оценка эксперта.