2. Типы гидравлических электростанций и принцип их работы.

1. Основные виды электростанций и их характерные отличия.

Тепловые электростанции. Среди них главную роль играют ГРЭС – государственные районные электростанции, которые обеспечивают потребности экономического района, работающие в энергосистемах. Большинство городов России снабжаются ТЭС. Часто в городах используются ТЭЦ - теплоэлектроцентрали, производящие не только электроэнергию, но и тепло в виде горячей воды. На размещение тепловых электростанций оказывает основное влияние топливный и потребительский факторы.

Гидроэлектростанции. ГЭС производят наиболее дешевую электроэнергию, но имеют довольнотаки большую себестоимость постройки. Более перспективным является строительство гидроаккумулирующих электростанций — ГАЭС. Их действие основано на цикличном перемещении одного и того же объема воды между двумя бассейнами: верхним и нижним. В ночные часы, когда потребность электроэнергии мала, вода перекачивается из нижнего водохранилища в верхний бассейн, потребляя при этом излишки энергии, производимой электростанциями ночью. Днем, когда резко возрастает потребление электричества, вода сбрасывается из верхнего бассейна вниз через турбины, вырабатывая при этом энергию. Это выгодно, так как остановки ТЭС в ночное время невозможны. Таким образом, ГАЭС позволяет решать проблемы пиковых нагрузок. Важным недостатком ГЭС является сезонность их работы, столь неудобная для промышленности.

Атомные электростанции. АЭС являются наиболее современным видом электростанций и имеют ряд существенных преимуществ перед другими видами электростанций:

· При нормальных условиях функционирования они абсолютно не загрязняют окружающую среду;

· Не требуют привязки к источнику сырья и соответственно могут быть размещены практически везде.

Однако работа АЭС сопровождается рядом негативных последствий:

· Существующие трудности в использовании атомной энергии – захоронение радиоактивных отходов. Для вывоза со станций сооружаются контейнеры с мощной защитой и системой охлаждения. Захоронение производится в земле, на больших глубинах в геологических стабильных пластах.

· Катастрофические последствия аварий на наших АЭС – следствие несовершенной защиты системы.

· Тепловое загрязнение используемых АЭС водоёмов.

2. Типы гидравлических электростанций и принцип их работы.

1. ГЭС. Принцип работы ГЭС . Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

2. ГАЭС-гидроаккумулирующие электростанции-предназначаются для покрытия пиков графика электрической нагрузки энергосистемы с использованием электроэнергии в период глубоких провалов нагрузки. ГАЭС практически не нуждается в постоянном водотоке, поскольку работает, используя воду, накопленную в водохранилище и таким водохранилищем (верхний бассейн) может быть озеро, море или искусственный бассейн, заполненный водами снеготаяния или реками с очень малыми расходами,т.е.такое водохранилище нуждается в подпитке лишь на потери. Но для работы необходим еще один-нижний бассейн. Между 2-мя этими бассейнами и образуется напор, необходимый для работы, как гидростанции, вырабатывающей электроэнергию в часы пика нагрузки в энергосистеме. В этот период вода из верхнего бассейна через турбины срабатывается в нижний бассейн. В часы провала нагрузки, когда появляется «свободная» электроэнергия, ГАЭС работает как насосная станция, перекачивая воду из нижнего бассейна в верхний.

3. ПЭС для выработки электроэнергии используют энергию приливов. Приливы являются следствием взаимного притяжения системы Земля-Луна-Солнце. Они поднимают уровень морей у берегов от нескольких см. до нескольких м. с периодичностью 12 час. 25мин. Идея ПЭС заключается: залив (губа,фиорд) отсекается от моря плотиной с водопропускными отверстиями. Во время прилива отверстия открыты, в залив поступает вода и уровень повышается. К началу отлива отверстия закрывается. В открытом море при отливе уровень понижается. А в заливе при открытых отверстиях-нет. В створе плотины образуется перепад уровней (напор), который используется для производства электроэнергии.

3. ЕЭС, ее составляющие, преимущества ЕЭС при использовании. Роль ГЭС в ЕЭС.

В ЕЭС Росиик 2001 г входят 7 ОЭС: Востока, Сибири, Урала, Волги, Юга, Центра, Северо-Запада. В эти ОЭС входят 74 энергосистемы. Благодаря созданию ЕЭС Росии в результате использования разновременности наступления максимальных нагрузок в разных энергосистемах и взаимопомощи энергосистем при авариях, в периоды проведения ремонтов обеспечено снижение суммарной мощности электростанций. В ЕЭС Росии наиболее рационально используются все топливно-энергетические ресурсы страны и обеспечивается оперативное маневрирование ими. В ЕЭС полностью используются гидроресурсы в период многоводья, компенсируется недовыработка ГЭС в маловодные годы. Ведущая роль ГЭС в покрытии пиков графиков нагрузки подтверждена всем имеющимся опытом эксплуаиации ЕЭС. Благодаря этой роли повышается экономичность энергосистем из-за низкой себестоимости электроэнергии ГЭС. ГЭС обеспечивает автоматич.регулирование частоты тока и напряжения в опорных точках ЕЭС. Благодаря свойствам ГЭС, а также разработанным мероприятиям, обеспечивается устойчивость и живучесть ЕЭС. Устойчивость энергосистемыэто способность сохранить параллельную (синхронную) работу электростанций при внезапных увеличениях или снижениях нагрузки. Живучесть – это способность не допускать при повреждениях в системе электроснабжения лавинного развития аварий с распространением отключений на значительные территории с массовым нарушением питания потребителей. Одной из серьёзных проблем функционирования ЕЭС является слабость межсистемных, а иногда и системообразующих связей в энергосистеме, что приводит к «запиранию» мощностей электрических станций. Слабость межсистемных связей в ЕЭС обусловлена ее территориальной распределённостью. Ограничения в использовании связей между различными ОЭС и большинства наиболее важных связей внутри ОЭС определяются в основном условиями статической устойчивости; для ЛЭП, обеспечивающих выдачу мощности крупных электростанций, и ряда транзитных связей определяющими могут быть условия динамической устойчивости.

4. ГАЭС - характерные элементы и роль в энергосистеме.

ГАЭС - гидроаккумулирующие электростанции - предназначаются для покрытия пиков графика электрической нагрузки энергосистемы с использованием электроэнергии в период глубоких провалов нагрузки. ГАЭС практически не нуждается в постоянном водотоке, поскольку работает, используя воду, накопленную в водохранилище и таким водохранилищем (верхний бассейн) может быть озеро, море или искусственный бассейн, заполненный водами снеготаяния или реками с очень малыми расходами. Но для работы необходим еще один-нижний бассейн. Между 2-мя этими бассейнами и образуется напор, необходимый для работы. В этот период вода из верхнего бассейна через турбины срабатывается в нижний бассейн. В часы провала нагрузки, когда появляется «свободная» электроэнергия, ГАЭС работает как насосная станция, перекачивая воду из нижнего бассейна в верхний. Для чистых ГАЭС в естественных условиях требуется наличие 2-х близко расположенных водоемов на разных уровнях; расположение близко к центрам потребления электроэнергии. Чаще изыскивается один естественный водоем, а другой сооружается искусственно. В период максимальных нагрузок, когда в энергосистеме образуется дефицит генераторной мощности, ГАЭС вырабатывает электроэнергию. Срабатывая воду из верхнего бассейна, турбина вращает генератор, который выдает мощность в сеть. Таким образом, применение ГАЭС помогает выравнивать график нагрузки энергосистемы, что повышает экономичность работы тепловых и атомных электростанций.

5. Приливные электростанции - принцип работы и роль в энергосистеме.

Прили́вная электроста́нция (ПЭС) — особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды.

Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов)..

Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Недостатками — высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в составе энергосистемы, располагающей достаточной мощностью электростанций других типов.

6. Суточные графики нагрузки и мощности. Какти образом они покрываются электростанциями разного вида?

7. Электроэнергетика и экология (сравнить ТЭС и ГЭС).

Критерий сравнения ГЭС ТЭС
Использ.ресурсы Ежегодно возобновл. энергия воды Уголь, торф, горюч. сланцы, газ-ресурсы исчерпаемые
Вид вырабатываемой энергии электричество Теплов. электрич.
Сибистоимость электроэн.

На ГЭС она почти в 4 раза выше, чем на равных по мощности ТЭС

Маневриность Высокоманевринность. Пуск от 1.5 до 5 мин. Низкая. Пуск агрегата из холодного сост.6ч, из горячего резерва-3ч
Роль в энергосистеме И в базовой и в пиковой части нагрузки. Обеспечивает резерв мощности Работают в базовой части нагрузки
КПД Теплов. 80-90% Электрич. 30-40%. Тепловой 60-70%
Влияние на окр.ср. Затопление обширных территорий, изменение ландш.и берегов Значит.влияние на атмосферу и литосферу

8. Что изучает инженерная гидрология? Основные гидрологические понятия. Примеры гидрографа реки средней полосы для многоводного и маловодного года.

Гидроло́гия — наука о воде в природе; изучает свойства и состояния воды, круговорот воды и формирование вод суши, явления в морях, реках, озерах, болотах, ледниках и взаимодействие их с окружающей средой.


9. Использование водной энергии. Напор и расход. Мощность водного потока. От чего зависит выработка электроэнергии?

Расх о д вод ы , объём воды, протекающей через поперечное сечение потока в единицу времени (Q в м3/сек);

Использование водных ресурсов для получения энергии.

Выра­ботка электроэнергии ГЭС зависит от водности реки.

 

 

10. Способы создания напора.

При плотинной схеме река перегораживается довольно высокой плотиной и создается водохранилище. Сила напора в этом случае напрямую зависит от высоты плотины.

При деривационной(отвод воды от главного русла реки в сторону) схеме плотина имеет небольшую высоту и создает лишь небольшой подпор, необходимый для нормального функционирования водозаборного сооружения. Сток реки с помощью каналов или тоннелей отводится к участку, расположенному ниже места водозабора, где и находится здание ГЭС.

Смешанный: плотинно-деривационный-подпор создается частично плотиной и частично деривацией, которая берет начало в створе плотины.

11. Что такое деривационная ГЭС?

Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние — спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида безнапорные, или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище — такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.

12. Водноэнергетически ресурсы-валовой,технический и экономический потенциалы,их примерное соотношение.

Валовой(теоретический) потенциал-суммарный энергетический потенциал речного стока по отношению к уровню морей;

Технический потенциал-составляет 0.64 от валового(при современном уровне техники 0.36 от валового потенциала теряется при его освоении);

Экономический потенциал-часть технического потенциала, которую экономически выгодно использовать.

13. Гидроузлы-основные виды сооружений, входящих в их состав, и в чем выражается комплексный характер гидроузлов.

Гидроу́зел — комплекс или группа гидротехнических сооружений, объединённых по расположению, целям и условиям их работы.