4. Привести расчетные соотношения и результаты вычислений значения KОПТ двумя способами.

5. Сопоставить результаты эксперимента с теоретическими сведениями. Подтвердить наличие корреляции процессов g(t) и v(t).

6. Построить семейство ЛХ и АЧХ САУ для нескольких значений параметра K (в том числе – для расчетного значения KОПТ).

 

7.3. Содержание отчета

 

1. Структурная схема исследуемой САУ.

2. Основные расчетные соотношения.

3. Экспериментальные зависимости по пп.1-4 задания.

4. Семейства ЛХ и АЧХ.

5. Выводы по результатам экспериментальных исследований.

 

7.4. Контрольные вопросы

 

1. С физической точки зрения объяснить влияние параметра K на уровень флюктуационной и динамической составляющих ошибки САУ.

2. Как вычисляется дисперсия суммы 2-х коррелированных случайных процессов?

3. Какой порядок астатизма имеет исследуемая система (рис.3) по выходу y(t)? по выходу ε(t)?

4. Оценить влияние параметра K на дисперсию случайного процесса y(t), если на вход САУ поступает только экспоненциально-коррелированный процесс g(t). Чему равна дисперсия y(t) при неограниченном росте K?

5. Как отражается улучшение фильтрующих свойств системы на корреляционных свойствах флюктуационной ошибки?

6. Какой должна быть структура САУ, согласованной с формирующим фильтром данного макета?

 

8. Исследование нелинейной САУ

(лабораторная работа 7)*

 

Цель работы – ознакомление с практическим использованием методов гармонической и статистической линеаризации при анализе САУ, содержащей релейный элемент и инерционную линейную часть.

 

8.1. Описание лабораторной установки

 

Лабораторная установка содержит макет САУ, внешний генератор широкополосных случайных процессов и осциллограф. Исследуемая САУ (рис. 4) включает в себя нелинейный элемент типа реле с петлей гистерезиса и линейную часть, состоящую из электронного интегратора и цепей коррекции с функциями передачи z1(jω) и z2(jω).

Рис.4

Схемы цепей коррекции и их параметры приведены на лабораторном макете. Нелинейный элемент может выключаться. На вход САУ можно подать скачкообразный сигнал g(t), а также широкополосный случайный процесс v(t) (с нулевым средним и спектральной плотностью мощности ). Уровень случайного процесса v(t) можно менять. Выходной сигнал y(t) контролируется с помощью осциллографа.

Метод гармонической линеаризации используется для анализа автоколебаний в нелинейной САУ. В ходе этого анализа необходимо ответить на следующие вопросы:

1) возможно ли возникновение автоколебаний в нелинейной САУ?

2) устойчив ли режим автоколебаний в случае их возникновения?

3) каковы параметры автоколебаний (амплитуда и частота)?

Условия возникновения автоколебаний в нелинейной САУ определяются решением уравнения замыкания

,

где - эквивалентная функция передачи нелинейного элемента;

- амплитуда 1-й гармоники на входе нелинейного элемента; - функция передачи линейной части системы.

Для исследуемого в макете САУ нелинейного элемента типа реле с петлей гистерезиса

,

где ; ; и - параметры нелинейного элемента, характеризующие размеры петли гистерезиса для входного и, соответственно, выходного процессов.

Эта функция передачи может быть представлена в виде

,

где . Такая запись показывает, что амплитуда 1-й гармоники на выходе реле с петлей гистерезиса такая же, как и на выходе идеального реле. Однако имеется фазовый сдвиг φ, обусловленный запаздыванием срабатывания такого реле в сравнении с идеальным.

Уравнение замыкания представляется в виде

и решается графически. Для этой цели следует построить годограф Найквиста линейной части и годограф нелинейного элемента. Наличие точки пересечения годографов является признаком возможности возникновения автоколебаний в нелинейной САУ. Устойчивость автоколебаний проверяется с помощью правила: режим автоколебаний в системе устойчив, если точка на годографе , соответствующая увеличению амплитуды, не охватывается (в смысле критерия устойчивости Найквиста) годографом .

Параметры автоколебаний (амплитуда и частота) определяются значениями соответствующих аргументов годографов в точке пересечения, однако для их определения необходимо иметь явную зависимость от аргументов функций и . Параметры автоколебаний можно также определить экспериментально с помощью осциллографа.

Метод статистической линеаризации используется для анализа нелинейной САУ при воздействии на нее шума. При этом нелинейный элемент заменяется эквивалентным линейным элементом с двумя коэффициентами усиления: для регулярной составляющей сигнала (математического ожидания) и центрированной случайной составляющей сигнала . Для реле с петлей гистерезиса коэффициенты и определяются с помощью выражений

,

,

где и - математическое ожидание (среднее) и среднеквадратичное значение сигнала на входе нелинейного элемента; - интеграл вероятности.

Так как коэффициент зависит от , то и функция передачи линеаризованной САУ зависит от уровня шума. Поэтому изменение влияет на свойства нелинейной САУ.

 

8.2. Задание по работе

 

1. Расчетная часть.

1) Построить ЛХ линейных САУ с различными цепями коррекции (значения параметров линейной части САУ указаны на лабораторном макете).

2) Построить годографы и нелинейных САУ с различными цепями коррекции и выполнить анализ автоколебаний. При построении годографа следует учесть, что

,

.

3) Для различных значений построить семейство ЛХ линеаризованных САУ с различными цепями коррекции и функцией передачи . При вычислении коэффициента использовать допущение (ошибка слежения в среднем близка к нулю), при котором громоздкое выражение для можно упростить:

.

Расчет выполнить для значений , равных .

 

2. Экспериментальная часть.

1) Подавая скачкообразное воздействие g(t), посмотреть на экране осциллографа и зарисовать переходные процессы линейных САУ 3-х типов (без коррекции и с цепями коррекции z1(jω) и z2(jω)). По степени колебательности переходных процессов оценить запас устойчивости по фазе.

2) Выполнить экспериментальный анализ автоколебаний в нелинейных САУ 3-х типов. Измерить частоту и амплитуду автоколебаний.

3) Для 3-х типов нелинейных САУ экспериментально исследовать срыв автоколебаний при изменении уровня шума на входе системы. Для этого следует постепенно увеличивать уровень шума до некоторого порогового уровня, при котором исчезает регулярная составляющая в выходном сигнале САУ (отсутствие регулярных автоколебаний свидетельствует о выполнении условий статистической линеаризации САУ). Пороговый уровень шума измерить.

4) Экспериментально исследовать влияние уровня шума на качество переходных процессов нелинейных САУ 3-х типов. Для этого установить уровень шума, соответствующий линеаризации САУ (срыв автоколебаний) и посмотреть несколько переходных процессов на экране осциллографа. Зарисовать усредненный (по ансамблю реализаций) переходный процесс. Затем увеличить уровень шума, снова посмотреть несколько реализаций переходного процесса, зарисовать усредненный процесс и сопоставить результаты. Уровни шума измерить с помощью осциллографа (при оценке процесс считать нормальным, не выходящим за пределы ).

5) Экспериментально оценить фильтрующие свойства линейных и нелинейных САУ 3-х типов.

 

8.3. Содержание отчета

 

1. Структурная схема макета САУ.