3. Рассчитываем проводимости ветвей схемы

.

4. Используя основную формулу метода, определяем узловое напряжение

.

Знак слагаемых числителя определяется несовпадением (+) или совпадением

(–) положительного направления и положительного направления ЭДС рассматриваемой ветви.

5. Рассчитываем неизвестные токи в ветвях, используя обобщенный закон Ома

Проанализируем результаты расчета. На рис. 5 в каждой ветви источник ЭДС и -элементы соединены последовательно. Поэтому токи в этих ветвях равны рассчитанным. Однако участки схемы в окрестности источников не были охвачены преобразованием. Следовательно, в соответствии с условием эквивалентности преобразования участков схем величина этих токов должна остаться такой же, как и до преобразования. Сравниваем по модулю значения токов, рассчитанных настоящим методом и методом контурных токов

Видно, что значения токов практически совпадают. Следовательно, оба расчета проведены корректно. Третий пункт задания выполнен.

IV. Выполнение четвертого пункта задания [].

1. Разрываем шестую ветвь и произвольно задаем положительное направление токов в остальных ветвях, положительное направление напряжения холостого хода и напряжения между узлами и (рис. 7).

Рис.7.

2. Определяем величину . Для этого предварительно рассчитываем методом двух узлов.

.

Используя основную формулу метода, определяем узловое напряжение

.

Рассчитываем токи и , используя обобщенный закон Ома

Для контура, включающего , составляем уравнение по второму закону Кирхгофа (направление обхода контура указано круглой стрелкой) и рассчитываем

,

.

3. Определяем входное сопротивление схемы со стороны зажимов разомкнутой ветви . Для этого эквивалентно преобразуем участок схемы , соединенный звездой, в участок, соединенный треугольником .

Рис. 8.

Преобразованная схема будет иметь вид (рис. 9)

Рис. 9

.

Используя свойства параллельного последовательного соединения - элементов, определяем

;

.

4. Определяем искомый ток, используя закон Ома для замкнутой цепи

.

Аналогичный ток, рассчитанный методом контурных токов, составляет

.

Они практически совпадают. Расчет проведен верно. Четвертый пункт задания выполнен.

V. Выполнение пятого пункта задания

Составим уравнение баланса мощностей для преобразованной схемы (рис. 2) с учетом выбранного на ней положительного направления токов

1. Определяем режим работы каждого активного элемента, руководствуясь правилом. Если истинное положительное направление тока, протекающего через источник ЭДС (которое можно определить только в результате расчета), совпадает с положительным направлением ЭДС этого источника, то активный элемент работает в режиме генератора. В противном случае он работает в режиме приемника.

Сопоставляя на рис. 2 заданное положительное направление токов, знаки рассчитанных токов и положительное направление ЭДС активных элементов, определяем их режим работы

Источник ЭДС - генератор, ;

источник ЭДС - приемник, ;

источник ЭДС - генератор, .

2. Составляем и численно проверяем корректность уравнения баланса мощностей (значения токов берем посчитанными методом контурных токов; мощность на пассивных приемниках определяем по закону Джоуля-Ленца)

,

где

.

Видно, что значения суммарных мощностей практически совпадают. В то же время на примере баланса мощностей покажем проверку корректности расчета любого параметра, указанного в задании. Воспользуемся абсолютным значением относительной погрешности

Расчет считается корректным, если . Итак пятый пункт задания и все задание выполнены.

Задание №2

Расчет цепи синусоидального тока

Задана эквивалентная схема цепи синусоидального тока (рис. 1) и ее параметры.

Рис. 1

.

Выполнить следующие действия:

1. Рассчитать токи в ветвях и напряжения на элементах схемы;

2. Составить и проверить баланс полных, активных и реактивных мощностей;

3. Построить векторную диаграмму токов для узла а.

Расчет проводим символическим методом в следующем порядке:

1. Рассчитываем сопротивление всех элементов схемы (учитываем, что )

.

2. Представляем ЭДС источника в виде комплекса действующего значения. Определяем комплексные сопротивления и проводимости ветвей

.

3. Рассчитываем токи в ветвях методом двух узлов. Задаем произвольно положительное направление токов в ветвях и положительное направление узлового напряжения. Используя основную формулу метода, рассчитываем узловое напряжение

.

Определяем токи в ветвях, используя обобщенный закон Ома

Проверяем корректность промежуточных расчетов, составив уравнение по первому закону Кирхгофа для узла а

Комплексная абсолютная погрешность расчета составляет

.

Определяем ее модуль

.

Рассчитываем относительную погрешность определения токов

.

Поскольку , расчет токов корректен. Первый пункт задания выполнен.

4. Составляем и проверяем баланс мощностей

Рассчитываем полную комплексную мощность, развиваемую источником, а также его активную и реактивную мощность. При этом используем закон Джоуля-Ленца в комплексной форме записи

,

.

Определяем суммарную активную и реактивную мощность на приемниках. При этом также используем закон Джоуля-Ленца

;

.

Рассчитываем суммарную полную комплексную мощность на приемниках

Проверяем корректность расчета, рассчитав модуль относительной погрешности определения полных мощностей

.

Расчет проведен корректно. Второй пункт задания выполнен.

4. Строим векторную диаграмму токов на комплексной плоскости, используя их действительные ( ) и мнимые ( ) составляющие. Задаемся масштабом по току ,

делим указанные составляющие токов на масштаб и откладываем получающиеся отрезки в сантиметрах вдоль осей комплексной плоскости (с учетом знаков составляющих)

Рис. 2.

Результаты построения (рис. 2) наглядно иллюстрируют корректность проведенных расчетов. Итак, третий пункт и все задание выполнены.

Задание №3

Расчет трехфазной цепи

Заданы эквивалентная схема замещения трехфазного приемника и ее параметры, а также задано линейное напряжение со стороны приемника

Рис. 1.

.

Выполнить следующие действия:

1. Определить линейные токи, фазные токи и фазные напряжения;

2. Рассчитать активную, реактивную мощность на всем приемнике и на каждой фазе в отдельности;

3. Построить на комплексной плоскости векторную диаграмму токов и напряжений.

Расчет проводим в следующем порядке:

1. Определяем комплексы действующих значений фазных ЭДС

2. Определяем комплексы действующих значений линейных и фазных напряжений

3. Рассчитываем комплексные сопротивления фаз приемника

4. По закону Ома определяем фазные токи

5. Рассчитываем линейные токи, используя первый закон Кирхгофа

6. Определяем полные комплексные, полные, активные и реактивные мощности каждой фазы и эти же мощности на всем трехфазном приемнике

При этом

Без специальной проверки видно, что баланс мощностей подтверждается. Следовательно расчеты проведены корректно.

7. Строим векторную диаграмму токов, напряжений и ЭДС. Задаемся масштабами по току и по напряжению

Рис. 2.

Третий пункт и все задание выполнено.

 

Рекомендуемая литература

Основная

1. Касаткин А.С., Немцов М.В. Электротехника. – М.: Издательский центр «Академия», 2003.