5. Полученную систему упорядочиваем

и представляем в матричной форме записи, подставив численные значения составляющих системы контурных уравнений

.

6. Решаем полученную систему контурных уравнений, используя правило Крамера []:

6.1. Вычисляем главный определитель системы, разворачивая квадратную матрицу контурных сопротивлений по первой строке (следует заметить, что величина определителя не зависит от того, по какой строке или столбцу его разворачивают)

;

6.2. Вычисляем дополнительные определители системы, последовательно заменяя столбцы матрицы контурных сопротивлений матрицей-столбцом контурных ЭДС. Каждый дополнительный определитель рассчитываем, разворачивая его по первой строке аналогичным образом

;

;

;

6.3. Определяем контурные токи

; ; .

7. Используя рассчитанные контурные токи, определяем реальные токи в ветвях схемы. Руководствуемся правилом: реальные токи в независимых ветвях схемы (принадлежащих только одному контуру) определяются только контурным током рассматриваемого контура

.

Реальные токи в общих ветвях между смежными контурами определяются по принципу наложения: алгебраической суммой смежных контурных токов. При этом знак каждого контурного тока определяется совпадением (+) или несовпадением (–) его направления с заданным положительным направлением реального тока в рассматриваемой ветви.

.

Второй пункт задания выполнен.

III. Выполнение третьего пункта задания.

Рассматриваемая схема замещения содержит четыре узла, поэтому к заданной схеме метод двух узлов непосредственно не применим.

1. Используя эквивалентное преобразование участка схемы , соединенного по схеме «треугольник», в участок , соединенный по схеме «звезда» (отмечен на рис. 4 пунктиром), приводим начальную схему к схеме, содержащей два узла (рис.5).

Рис. 4 Рис. 5

При этом

.

.

Эквивалентно объединяя последовательно соединенные -элементы в каждой ветви, получаем исходную схему для расчета методом двух узлов (рис. 6).

Рис. 6

При этом

2. Произвольно задаем положительное направление токов в ветвях схемы и положительное направление узлового напряжения (рис. 6)