2. Включив осциллограф и звуковой генератор, получить устойчивую картину сигнала.

3. Изменяя частоту сигнала звукового генератора получить и зарисовать фигуры Лиссажу для соотношения частот 3:2; 2:1; 1:2; 2:3; 3:1.

4. Определить для каждого случая частоту колебаний неизвестного генератора, используя формулу , где и – число точек касания фигуры соответственно с горизонтальной и вертикальной линиями.

Контрольные вопросы

 

1. Каково назначение осциллографа?

2. Из каких основных блоков состоит осциллограф? Каково их назначение?

3. Как устроена электронно-лучевая трубка? Каким образом формируется в ней электронный луч?

4. Что получается в результате сложения двух колебаний одинакового направления и при сложении двух взаимно перпендикулярных колебаний?

5. Как с помощью осциллографа определяется истинное значение амплитуды измеряемого сигнала?

 

Рекомендательный библиографический список

 

1. Бутковский О.Я, Бухарова О.Д., Кузнецов А.А. Лабораторный практикум по физике. Электростатика и постоянный ток / Владим. политехн. ин-т. – Владимир, 1993. – 44 с.

2. Лабораторный практикум. Колебания и волны: Учеб. пособие /Под ред. В.А. Шилова. – М: МИФИ, 1989. – 56 с.

Лабораторная работа № 4-7

 

ПОЛУЧЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН И ИЗУЧЕНИЕ

ИХ СВОЙСТВ

 

Цель работы: получение стоячих электромагнитных волн, определение длины электромагнитной волны и скорости распространения.

Оборудование: ламповый генератор незатухающих электрических колебаний, источник питания, двухпроводная измерительная линия с индуктивной связью, два мостика с индикаторами.

 

Введение

 

При прохождении электрического тока через контур, обладающий омическим сопротивлением R, часть энергии тока непрерывно переходит в тепло. Поэтому электрические колебания в контуре сравнительно быстро затухают. Для получения незатухающих электрических колебаний электрическую энергию контура необходимо непрерывно пополнять.

Современные ламповые генераторы позволяют получить электрические колебания как очень низких (с периодом в 10 – 10 с), так и очень высоких частот (с периодом в миллиардные доли секунды).

Электрические волны вдоль проводов. Двухпроводная линия состоит из двух длинных параллельных проводов, натянутых на некотором расстоянии друг от друга. В дальнейшем будем пренебрегать сопротивлением проводов, а также будем считать, что расстояние между проводами значительно меньше, а длина проводов значительно больше длины электромагнитной волны. При этих условиях электромагнитное поле сосредоточено в основном между проводами, поэтому система практически не излучает электромагнитные волны в окружающее пространство, выполняя роль канала для передачи высокочастотной энергии от генератора к приемнику. Поместим вблизи катушки L лампового генератора незатухающих электрических колебаний катушку L3, концы которой присоединим к длинным параллельным проводникам АВ и БГ (рис. 1). При прохождении через контур электрических колебаний в катушке L3 возникает переменная ЭДС индукции и точки А и Б заряжаются периодически то положительно, то отрицательно, причём если точка А заряжается положительно, то точка Б отрицательно и наоборот. В соответствии с колебательным характером изменения ЭДС в катушке L3 величина потенциала в точках А и Б меняется колебательным образом. Области с максимальным значением потенциала не остаются локализованными в точках А и Б, а распространяются с некоторой скоростью С, подобно тому, как механические колебания, возбуждённые на конце струны, распространяются вдоль этой струны.

 


Если заснять мгновенную картину распределения потенциала на проводниках АВ и БГ, то окажется, что распределение потенциала проводника меняется по тому же гармоническому закону, по которому совершаются электрические колебания в контуре генератора (рис. 2).

Колебания генератора вызывают в проводниках АВ и БГ волнообразное распространение максимумов потенциала. На рис. 2 показаны электрическое и магнитное поля в двухпроводной линии. Силовые линии электрического поля "перекинуты" от положительно заряженных участков одного проводника к отрицательно заряженным участкам другого. Магнитные силовые линии охватывают проводники и расположены перпендикулярно электрическим линиям и скорости распространения волны.

Электромагнитные волны, распространяясь вдоль проводников АВ и БГ, отражаются от их концов подобно тому, как отражается от точки крепления волна, бегущая вдоль струны. Отражённая волна, идущая по направлению к генератору, складываясь с прямой волной, идущей от генератора, даёт стоячую электромагнитную волну.

Если посредством мостика лампочку накаливания Л перемещать вдоль проводников АВ и БГ (рис. 4), то накал лампочки будет меняться от нуля до некоторого максимального значения. Точки, в которых лампочка загорается до максимального накала, соответствуют максимальному значению силы тока и максимальному значению напряженности магнитного поля. Эти точки являются пучностями магнитного поля. Точки, в которых сила тока равна нулю (лампочка не горит), являются узлами тока и электромагнитной волной. Если перемещать вдоль проводников мостик с неоновой лампочкой, реагирующей на электрическое поле, то можно выявить пучности и узлы электрического поля стоячей волны. С пучностями магнитного поля совпадают узлы электрического и, наоборот, с узлами магнитного поля совпадают пучности электрического поля.

Расстояние между двумя соседними пучностями, или узлами магнитного (электрического) поля, равно половине длины волны, распространяющейся вдоль проводников. Если это расстояние обозначить через , то будем иметь

, (1)

длину волны можно выразить

, (2)

где с – скорость распространения волны; Т – период колебаний; n – частота колебаний.

Из формул (1) и (2) получаем

. (3)

Зная частоту колебаний генератора и измерив длину волны, определим скорость распространения электромагнитных волн.

 

Порядок выполнения работы

 

1. Соединить генератор электрических колебаний с длинными параллельными проводниками и возбудить в них стоячую электромагнитную волну.

2. Перемещением вдоль проводников мостика, имеющего лампочку накаливания, выявить пучности и узлы магнитного поля стоячей волны. Измерить расстояние между первой и второй, первой и третьей, первой и четвёртой пучностями магнитного поля.

3. Перемещать вдоль проводников мостик, имеющий неоновую лампочку, и выявить пучности и узлы электрического поля стоячей волны. Убедиться, что пучности электрического поля совпадают с узлами магнитного поля и наоборот. Измерить расстояние между первой и второй, первой и третьей, первой и четвёртой пучностями электрического поля.

4. Пользуясь формулой (3), вычислить скорость распространения электромагнитных волн и оценить погрешность измерений.

 

Контрольные вопросы

 

1. Расскажите о явлениях, наблюдающихся в закрытом колебательном контуре.

2. Каков механизм образования стоячих волн в двухпроводной линии?

 

Рекомендательный библиографический список

 

1. Калашников С.Г. Электричество. – М.: Наука, 1977. – 231 с., §231.

2. Савельев И.В. Курс общей физики: В 3 т. Т. 2. – М.: Наука; 1988. §105, 106.

 

5. ОПТИКА

В разделе «Оптика» студенты осваивают основные понятия, явления и задачи волновой оптики, знакомятся с методами измерения оптических характеристик (длина волны, показатель преломления и т.п.), а также с применением оптических измерений в прикладных целях (определение концентрации раствора сахара). Необходимо отметить, что оптические приборы являются точными и дорогими инструментами и выполнять работы с их помощью следует особенно тщательно и аккуратно.

 

Лабораторная работа № 5-3