Влияние радиации на здоровье человека
Высокие дозы радиации представляют смертельную угрозу для человека. Полученная доза в 500 бэр или больше убивает практически любого человека в течение нескольких недель. Доза в 100 бэр может привести к серьезной лучевой болезни. Радиация может также способствовать увеличению раковых заболеваний и вызывать различные дефекты плода.
В то время, как у ученых нет разногласий по поводу воздействия высоких доз радиации на человека, они до сих пор не пришли к согласию по поводу воздействия малых доз. Некоторые ученые считают, что безопасных доз не существует, так как в долгосрочной перспективе воздействие низких доз может иметь кумулятивный эффект. Другие утверждают, что существует нижний порог, за которым радиация не представляет вреда для человека, даже если это воздействие долгосрочное. В зависимости от того, какая из этих теорий лежит в основе анализа специалиста, зависит его оценка последствий воздействия малых доз радиации на человека.
Система измерения радиации
Система измерения радиации очень сложная. Для доступности нам пришлось упростить некоторые понятия.
В основе измерений радиации лежат четыре понятия: активность (распад в источнике), экспозиционная доза (ионизирующий эффект при столкновении с веществом), поглощенная доза (в смысле поглощенной энергии) и эквивалентная доза (воздействие радиации на живые ткани). Для каждого из этих понятий существует своя система измерений и терминология. Еще более усложняя эту информацию, добавим, что для каждого из этих понятий существуют две системы обозначений: одна общепринятая (внесистемная), вторая - международная (единицы системы СИ). Международную систему обозначений используют реже. В освещении чернобыльской аварии на Чернобыле были использованы обе системы, и это вводило людей в заблуждение). Какую бы систему вы не избрали для себя, главное - никогда не использовать обе системы в одном материале.
Общепринятые единицы измерения: кюри, рентген, рад, бэр.
Международные единицы измерения: беккерель, кулон/кг, грэй, зиверт.
Активность
Кюри (Ки) и беккерель (Бк) - единицы измерения количества распадов атомов в источнике радиоактивного излучения. 1 Ки = 3,7 х 10 в десятой степени Бк.
Экспозиционная доза
Рентген (Р) и кулон на килограмм (Кл/кг) определяют количество рентгеновского или гамма-излучения, ионизирующего газы (производящего позитивные или негативные ионы в изначально электрически нейтральном веществе). Обе единицы измеряют дозу радиации в газе с точки зрения электрической заряженности частиц и не учитывают поглощенную энергию. Рентген (Р) или кулон (Кл) - не очень хорошие единицы для замеров альфа- или бета-частиц, которые вызывают очень интенсивную, но локальную ионизацию. Один кулон на килограмм равняется 3876 рентген.
Поглощаемая доза
Рад или грэй (Гр) используют для обозначения энергии, поглощенной веществом. Рад является единицей измерения дозы, полученной веществом. Вещество получает дозу в один рад, когда один грамм вещества поглощает энергию, равную 100 эрг. Тоже и с грэем. Вещество получает дозу в один грэй, когда один килограмм вещества поглощает один джоуль энергии. 1 грэй=100 рад.
Эквивалентная и эффективная эквивалентная доза
Рад и грэй показывают какую энергию поглотило вещество, однако эти величины не объясняют, как радиация воздействует на живые ткани. Повреждения тканей, как и распределение этих повреждений, зависит от типа и энергии поглощенной радиации.
Биологический эффект эквивалентной дозы облучения выражают линейной формулой передачи энергии веществу (в английской терминологии LET). “Для расчета эквивалентной дозы поглощенную дозу умножают на коэффициент, отражающий способность данного вида излучения повреждать ткани организма”. (Васильева Е.А. et al, с.41)
Рентгеновские и гамма-лучи - это электромагнитное излучение высокой частоты, поэтому эти виды энергии могут глубоко проникать в живые ткани и материалы.
Гамма-лучи могут пройти через человеческое тело или несколько сантиметров свинца.
Бета-лучи представляют собой частицы (электроны или позитроны), поэтому они могут проникнуть в тело человека через кожу лишь на несколько миллиметров.
Альфа-излучение и нейтроны - относительно крупные частицы, поэтому они обладают низкой проникающей способностью. Альфа-излучение с трудом проходит через кожу человека.
Альфа-излучение способно причинить наибольший вред человеку, но очень локально (так как не может проникнуть в организм сквозь кожу), в то время как гамма-излучение причиняет менее вреда, но поражает живые ткани глубоко и на большом расстоянии вокруг (так как обладает большой проникающей способностью).
Уровень повреждения биологического тела различными видами радиации суммируется с помощью Q фактора, который изменяется в зависимости от способности излучения или частиц производить ионы. Для рентгеновских и гамма-лучей Q фактор равняется 1. Для альфа-частиц Q равняется 10.
Для того, чтобы определить биологическую дозу (показывающую какой эффект на живое тело оказала радиация) (D), поглощенную дозу (R) в грэях или бэрах умножают на качественный фактор (Q) (D = R x Q). Эквивалент биологической дозы (D) выражают в бэрах или зивертах, в зависимости от того, в чем измерялась R, в радах или грэях.
Биологическое воздействие радиации определяется и другими факторами. Некоторые органы более восприимчивы к радиации, чем другие, и сильнее поражаются ей. Радиоактивные вещества, попавшие в организм с пищей, могут накапливаться в определенных органах. Кроме того, одни органы более жизненно важные, чем другие. Эта особенность получила название модифицирующего фактора N. Таким образом эффективную эквивалентную доза (D), выраженная в бэрах или зивертах, чаще определяют по формуле D = R x Q x N.
Иногда, когда говорят о низких дозах радиации, для их обозначения используют миллибэр или миллизиверт. Один бэр или один зиверт равен 1000 миллибэр или миллизиверт. Один зиверт равен ста бэрам.