Теорема существования и единственности решения задачи Коши для ЛДУ го порядка
Пусть непрерывны на
. Тогда для
точки
и
решение задачи Коши (2.6.1),(2.6.2), причем оно определено на всем интервале
.
Рассмотрим левую часть ЛДУ (2.6.1) и (2.6.10) – дифференциальный оператор
.
Покажем, что является линейным оператором, т.е.
и
, где
.
,
Таким образом, – линейный дифференциальный оператор.
Операторная форма ЛДУ:
ЛНДУ:
ЛОДУ:
Линейные однородные ДУ (ЛОДУ) n-го порядка.
Теорема. Множество частных решений ЛОДУ n-го порядка является линейным пространством относительно операций сложения функций и умножения на число.
Док-во. Нужно доказать, что операции сложения частных решений и умножения частных решений на число не выводит из множества частных решений, т.е. сумма частных решений – также решение, произведение частного решения на число
– также решение,
.
Пусть – решения, тогда
, т.е.
– решение,
, т.е.
– также решение. Нулевым вектором в линейном пространстве решений ЛОДУ является функция
.
Итак, решения ЛОДУ n-го порядка образуют линейное пространство.
2.7. Линейная зависимость функций. Определитель Вронского (вронскиан). Теорема о вронскиане системы линейно зависимых функций и о вронскиане системы линейно независимых частных решений ЛОДУ.
Опр. Функции называются линейно зависимыми на
, если
, не все равные
, такие, что
Опр. Если выполнение равенства ( ) на всем интервале
возможно только при
, то функции
называются линейно независимыми на
.
Критерий линейной зависимости:
Функции линейно зависимы на
для некоторого k=1,….n (т.е. хотя бы одна из функций линейно выражается через остальные).
Пример.
Т.к. , то функции линейно зависимы на
Пусть функции
раз дифференцируемы на
.
Опр. Определителем Вронского (вронскианом) системы функций называется определитель
.
Теорема о вронскиане системы линейно зависимых функций
Пусть функции линейно зависимы на
. Тогда
:
Док-во: по определению линейной зависимости функций , не все равные
, такие, что
. Последовательно продифференцируем это равенство:
Зафиксируем
(2.7.2) – СЛАУ (однородных) относительно , которая имеет ненулевое решение, т.е. определитель системы равен
, т.е.
(
).
Замечание. Обратное неверно, т.е. если , то функции могут быть линейно независимы.
Пример.
,
.
Т.е. на
, но
и
линейно независимы, т.к.
. Не существует
, таких, что
для всех
.