Устройство металлографического микроскопа

В настоящее время применяют металлографические мик­роскопы, работающие на принципе отраженного света от полированной поверхности микрошлифа. Металлографический исследовательский микроскоп МИМ-7 обеспечивает увеличе­ние от 60 до 1440 раз. Микроскоп состоит из механической и оптической систем и осветительного устройства.

Оптическая система (рис. 3) микроскопа включает объ­ектив, окуляр и ряд вспомогательных оптических элементов: зеркала, призмы, диафрагмы и т. п.

Рис.3 Схема оптической системы микроскопа МИМ-7

 

 

Светлые лучи от электрической лампы 1 проходят через коллектор 2 и, отразившись от зеркала 3, попадают на светофильтр 4, затем на апертурную диафрагму 5 (для ограничения световых пучков и получения высокой четкости изображения), линзу 6, фотозатвор 8, полевую диафрагму 9 (для ограничения освещенного поля рассматриваемого участка на микрошлифе), преломляются пентапризмой 10, проходят через линзу 11, попадают на микрошлиф 12, установленный на предметном столике. Отразившись от микрошлифа 12, лучи вновь проходят через объектив 13 и выходя из него параллельным пучком, попадают на отраженную пластинку 14 и ахроматическую линзу 16. При визуальном наблюдении в ход лучей вводится зеркало 17, которое отклоняет лучи в сторону окуляра. При фотографировании зеркало 17 выключается выдвижением тубуса вместе с окуляром и зеркалом, и лучи направляются непосредственно к фотоокуляру 19, проходят через него на зеркало 20, от которого отражаются и попадают на матовое стекло 21, где и дают изображение. Для фиксирования микроструктуры матовое стекло 21 заменяется кассетой с фотопластинкой. Для наблюдения в поляризованном свете в систему включаются вкладной анализатор 15 и поляризатор 7.

Применение различных; объективов и окуляров позволяет регулировать увеличение микроскопа. Объектив называют сухим, если между поверхностью микрошлифа и объекти­вом находится воздушная среда, если жидкая (обычно кед­ровое масло)—иммерсионным. Увеличение микроскопа опре­деляется как произведение увеличений объектива и окуляра. Увеличение объектива и окуляра указано на их оправках, а увеличение объектива выносится дополнительно на рукоятку макрометрического пинта.

При работе с микроскопами исследуемый шлиф помеща­ют на предметный столик. Грубая фокусировка производит­ся подниманием или опусканием столика микровинтом, точная вращением микровинта.

Во избежание порчи микрошлифа не рекомендуется пе­редвигать его по поверхности столика, а следует пользоваться специальными винтами, перемещающими столик с установ­ленным па нем микрошлифом в продольном и поперечном направлениях.

Характеристики микроскопа

Разрешающая способность микроскопа d —минималь­ное расстояние, при котором две точки различаются раздель­но, не сливаясь в одно пятно. Объекты, размерами менее раз­решающей способности микроскопа, при исследованиях не обнаруживаются. Разрешающая способность микроскопа оп­ределяется по формуле

,

где l - длина волны света (для белого света 0,6 мкм);

n - коэффициент преломления среды между объективом и предметом;

j - отверстный угол объектива.

В современных микроскопах угол объектива близок к 90°, показатель преломления воздуха n= 1, т. е, разрешаю­щая способность микроскопа равняется длине световой вол­ны белого света и составляет 0,6 мкм. Для кедрового масла n = 1,5, отсюда d=0,4 мкм. При использовании оптическо­го микроскопа минимальный размер видимого объекта со­ставляет 0,4 мкм. При использовании поляризованного света, разрешающая способность оптического микроскопа достигает 0,2 мкм.

Суммарное увеличение микроскопа – произведение увеличения линз объектива и окуляра.

Исследование микрошлифов

Изучение микроструктуры начинается с анализа нетравленных микрошлифов для выявления на них пороков (пор, раковин, неметаллических включений), которые обладают меньшей отражательной способностью по сравнению с ме­таллом и имеют поэтому при просматривании темную окрас­ку. Все нарушения сплошности металла уменьшают «живое», рабочее сечение детали и являются концентраторами напря­жений. Чем крупнее включения, тем значительнее их вредное влияние, осколочная, остроугольная форма их в большей сте­пени концентрирует напряжения, чем округлая. Все это при­водит к снижению механических характеристик, особенно пластичности и вязкости.

 

 

Характер расположения и количество неметаллических включений оценивается в соответствии с ГОСТ 1778-70 по пя­тибалльной шкале.

На нетравленных микрошлифах сталей, полученных про­каткой, в результате горячей обработки давлением, хрупкие оксиды разрушаются и приобретают вид изолированных ок­руглых включений (рис. 4, а). Более пластичные сульфиды вытягивают­ся в направлении течения металла и имеют продолговатую форму (рис. 4, б). На микрошлифах после травления может наблюдать­ся один вид зерен (светлые) или два—(светлые и темные) (рис. 4, в, г). Размер зерна оценивается с помощью специальной шкалы померами от 1 до 8 (№ 1—наиболее крупное зерно, № 8—мел­кое).

Размер зерна металлов и сплавов оказывает значитель­ное влияние на их механические и технологические свойства. Крупнозернистая структура (зерно № 1 и 2) характеризуется пониженными механическими свойствами, с уменьшением зерна от №3 до 8 повышается твердость и прочность и снижается пластичность. Дальнейшее измельчение зерна приводит к повышению и прочности, и пластичности.

х135 х135

а) б)

     

х135 х135

в) г)

Рис. 4. Микроструктуры шлифов: а, б - нетравленные микрошлифы;

в, г – шлифы после травления.

 

План составления отчета

1. Указать цели микроструктурного анализа и кратко описать методику его проведения.

2. Описать технологию приготовления микрошлифа.

3. Зарисовать оптическую схему металлографического микроскопа М.ИМ.-7.

4. Зарисовать и описать микрошлифы до и после травле­ния.

5. Сделать выводы о влиянии неметаллических включе­ний и величины зерна на свойства металлов и сплавов.

 

ЛАБОРАТОРНАЯ РАБОТА № 3