У меня на этом всё. Я готов ответить на вопросы.

Спасибо большое.

В.Путин: Спасибо Вам.

То, что Вы говорите, безусловно, захватывает. Как только Вы сказали, что создаются материалы, которых нет в природе – то есть нет на Земле, это, конечно, само по себе сразу впечатляет и, безусловно, создаёт колоссальные возможности для всех направлений жизнедеятельности человека, я уже не говорю про экономику, и в том же здравоохранении, и в промышленности – вообще везде. Это, конечно, очень перспективно и очень интересно.

Если Вы говорите, что для этого необходимо создавать эти полигоны для оборудования, насытить оборудованием, то, конечно, мы с коллегами в Правительстве – я пометил для себя – подумаем на тему о том, что можно, и в совете с вами, Герман подскажет, наметим конкретные шаги для того, чтобы двигаться по тому пути, который Вы нам показываете.

Вам спасибо большое. Успехов!

С.Будённый: Спасибо.

Г.Греф: Спасибо большое, Семён.

Спасибо огромное, Владимир Владимирович.

В.Путин: У Вас всё-таки пять человек. Наверное, будет невежливо, если мы совсем не дадим ничего сказать. Если можно, коротко просто по проблеме и по тем задачам, которые вы видите. Ещё два человека у Вас там, да?

Г.Греф: Да. Ребята, повезло. Тогда, если можно, давайте без представлений, очень коротко.

В.Путин: Проблема и то, что вы хотели бы от нас всех вместе увидеть и почувствовать в качестве поддержки. Пожалуйста.

Г.Греф: Тогда Алексей Наумов, пожалуйста, Высшая школа экономики.

А.Наумов: Добрый день, Владимир Владимирович! Добрый день, коллеги!

Я занимаюсь обучением с подкреплением, я совсем коротко. Это на самом деле очень важная задача, потому что она возникает при проектировании беспилотных транспортных средств, при автоматизации производства, при проектировании систем охлаждения дата-центров.

Обучение с подкреплением, вообще говоря, лежит в основе этих систем. Уже очень много есть примеров того, что искусственный интеллект с помощью обучения с подкреплением, например, обыграл чемпиона мира в го. И обучение с подкреплением – это не просто обычная модель искусственного интеллекта: она учится, как учится человек, то есть человек встаёт, ходит, падает – взаимодействует со средой.

Так же, если мы рассматриваем, например, бесплотный автомобиль, то он тоже взаимодействует со средой, с другими участниками дорожного движения, и он от взаимодействия получает награды и штрафы. И цель как раз – это найти такую оптимальную стратегию, которая бы максимизировала награды и минимизировала штрафы.

Но здесь самая большая проблема – это объём накопленного опыта. Когда мы, например, учим беспилотный автомобиль, то его очень дорого учить на практике, и, действительно, мы не видим эти беспилотные автомобили сейчас вокруг нас. То, что делают многие страны, и то, что нам надо тоже развивать, – это так называемые цифровые двойники, в которые можно засунуть беспилотный автомобиль и там, соответственно, его обучить.

Но самая большая проблема возникает, и Вы уже говорили в своей речи об этом, что если мы начинаем использовать обученную модель цифрового двойника на практике, то цена ошибки на самом деле здесь просто огромная. Это означает, что нужно искать алгоритмы, надёжные алгоритмы и, более того, с математическими гарантиями надёжности. Очень часто здесь есть группы исследователей, которые делают математику, но при этом их математика неприменима на практике, и есть группы исследователей, которые делают очень практичные алгоритмы, которые совершенно неприменимы в реальных историях.