Спасибо большое ещё раз за внимание.

Г.Греф: Владимир Владимирович, спасибо большое. Мы действительно по сокращённой программе выбрали три небольших доклада, три спикера, молодых учёных, которые выступят здесь со своими предложениями. Это лидеры сегодня в соответствующих прикладных областях разработки и внедрения искусственного интеллекта.

И первая тема – наверное, такая тема, которая сегодня всех исследователей очень стимулирует. Она связана не только с повышением эффективности отрасли, но, самое главное, со спасением жизни людей, и Вы об этом сказали: это здоровье, это наше здравоохранение. Поэтому мы хотим начать именно с этой темы.

Мы у себя тоже считаем эту тему приоритетной, у нас есть специальная компания, которая называется «СберМед ИИ», и с нашими партнёрами, в первую очередь, конечно, с Москвой, мы внедряем новые современные решения. Затем эти решения внедряются у наших региональных партнёров: 63 региона на сегодняшний день наши партнёры, которые внедрили большой стек решений искусственного интеллекта и продолжают дальше развивать эту технологию.

Позвольте представить первого учёного – Елену Владимировну Соколову, которая скажет о том, чем она занимается в области здравоохранения.

(Идёт демонстрация видеоролика.)

Е.Соколова: Добрый день, коллеги!

Я представляю лабораторию искусственного интеллекта «Сбера» и сегодня хочу рассказать, как мы уже решаем актуальные проблемы здравоохранения с помощью искусственного интеллекта.

На сегодняшний день двумя лидирующими причинами смертности – как в мире, так и в России – остаются сердечно-сосудистые и онкологические заболевания. При этом в 2019 году сердечно-сосудистые заболевания стали причиной практически половины всех летальных исходов в России, а из-за позднего выявления онкологии 120 тысяч пациентов умирают в течение первого года после постановки диагноза. Именно поэтому наши решения направлены на раннее выявление этих заболеваний.

Основные направления нашей работы фокусируются на анализе медицинских изображений и анализе медицинских текстов. И сейчас я расскажу о примере одного из таких проектов, который мы реализовали в лаборатории искусственного интеллекта, – по анализу КТ грудной клетки, который был внедрён в практическое здравоохранение с помощью одной из компаний нашей экосистемы «СберМед ИИ».

Во время пандемии, вы все знаете, что было сделано просто огромное количество КТ грудной клетки, это очень перегружало здравоохранение. И в то время как внимание врачей-рентгенологов было направлено на оценку вирусной пневмонии, мы обучили искусственный интеллект на этих сложных данных находить признаки рака лёгкого.

В одном из проведённых экспериментов в реальной клинике на реальных клинических данных было проанализировано полторы тысячи КТ грудной клетки, из них искусственный интеллект выделил 12 пациентов с высокой вероятностью рака лёгкого, у восьмерых из них диагноз подтвердился, и уже стартовало лечение этих пациентов.

Но по сравнению с медицинскими изображениями наибольший массив данных о пациенте накапливается в виде текстов, слабо структурированных, неструктурированных и сложных к анализу. Это и жалобы, и анамнез, и данные лабораторных анализов, инструментальных, и так далее. На самом деле наибольший потенциал для системы здравоохранения лежит именно в области анализа таких данных – текстовых данных.

Сейчас в медицине существует два основных тренда. Первый из них – это популяционный анализ населения и выделение людей, находящихся в группе риска развития сложных хронических заболеваний для их своевременного предотвращения. Второй – это персонализированный анализ огромного объёма данных о конкретном пациенте для выработки индивидуального подхода к оказанию ему медицинской помощи.

Искусственный интеллект в силах обработать абсолютно любые объёмы информации за короткие сроки, врач же физически не сможет изучить всю медицинскую историю о каждом пациенте. Именно поэтому я считаю, что сервисы искусственного интеллекта должны стать рядовыми помощниками каждого врача.

Один из таких примеров диагностического ассистента – это модель, которую мы разрабатываем совместно с Правительством Москвы. Данная модель обучена на беспрецедентно большом объёме данных – это около 30 миллионов визитов пациентов Москвы за два года. Эта модель по анализу всей медицинской информации о пациенте предлагает врачу заключительный диагноз в качестве второго мнения.