Конденсационная устойчивость характеризует способность дисперсных систем сохранять неизменной с течением времени удельную поверхность.

Факторы устойчивости лиозолей:

· наличие электрического заряда коллоидных частиц(частицы несут одноименный заряд ,поэтому при встрече частицы отталкиваются)

· способность к сольватации(гидратации) ионов диффузного слоя(чем более гидратированы ионы в диффузном слое, тем толще общая гидратная оболочка, тем стабильнее система)

· адсорбционно-структурирующие свойства систем.

61.Коагуляция. Порог коагуляции и его определение, правило Шульце-Гарди, явление привыкания. Взаимная коагуляция. Понятие о современных теориях коагуляции. Биологическое значение коагуляции. Коллоидная защита и пептизация.

62.Коллоидные ПАВ; биологически важные коллоидные ПАВ (мыла, детергенты, желчные кислоты). Мицеллообразование в растворах ПАВ. Определение критической концентрации мицеллообразования. Липосомы.

К о л л о и д н ы е П А В

Все поверхностно-активные вещества можно разделить на два класса — истинно растворимые и коллоидные.

Истинно ра створимые ПАВ — дифильные органические соединения с небольшими углеводородными радикалами: низшие спирты, карбоновые кислоты и их соли, амины, фенолы.

Коллоидные ПАВ — длинноцепочечные дифильные органические соединения с числом атомов углерода в р адикале о т 10 до 20. По способности к диссоциации в воде ко ллоидные ПАВ подразделяю т на ионогенные и неионогенные. В свою очередь ио ногенные ПАВ делятся на анио нные, катионные и амфо литные.

Анионные — диссоциир уют с образованием повер хностно -активного анио на; это соли высших карбоновых кисло т (мыла), например, олеат натрия C17H33COONa; соли алкилс ерных кис лот CnH2n+1OSO3M, где n = 10 – 20, M = K, Na, например, додецилс ульфат натрия C12H25OSO3Na; соли алкиларил- сульфоновых кисло т CnH2n+1C6H4SO3M, где n = 8 – 22, M = K, Na, например, п-октилбензолсульфонат натрия C8H17C6H4SO3Na и ряд других.

Катионные — диссоциир уют в воде с образованием повер хностно - активного катиона; это соли первичных, вторичных и третичных алифатических и ароматических аминов, например, октадециламмоний хлорид [C18H37NH3]+Cl–; соли алкилзамещенных аммониевых оснований, например, цетилпир идиний хлорид .

Амфолитные — содержат две функциональные группы — одну кис лотного, другую основного хар актер а, например, карбоксильную и аминогруппу. В зависимости от pH среды амфолитные ПАВ обладают анионактивными или катионактивными свойствами.

Неионогенные — не диссоциир уют в воде на ионы, например, оксиэтилиро - ванные спирты, амины, фено лы, аминоспир ты. Их по лучают присоединением оксида этилена к соответствующим исходным веществам по реакции:

М и ц е л л о о б р а з о в а н и е в р а с т в о р а х к о л л о и д н ы х П А В

Коллоидные ПАВ обладают невысокой истинной растворимостью. Растворы, в которых они молекулярно диспергированы, могут иметь максимальную концентрацию от 10–6 до 10–3 моль/л. Это следствие наличия у молекул ПАВ длинных углеводородных радикалов. 83

Малая растворимость ПАВ влечет за собой ассоциацию их молекул, с ростом концентрации переходящую в мицеллообразование. Концентрация раствора ПАВ, при которой начинают образовываться мицеллы, называется критической концентрацией мицеллообразования (ККМ).

Изотермы поверхностного натяжения коллидных ПАВ отличаются от изотерм истинно растворимых ПАВ более резким понижением поверхностного натяжения с увеличением концентрации и наличием излома на изотерме (рис. 7.1). Концентрация в точке из лома соответствует критической концентрации мицеллообразования, выше которой в растворе самопроизвольно протекает процесс образования мицелл и истинный раствор переходит в ультрамикрогетерогенную систему — золь.

Механизм термодинамики мицелообразования

 

С ростом концентрации ионы или молекулы ПАВ выходят в поверхностный слой на границе раздела фаз и уменьшают поверхностно е натяжение раствора. Когда поверхностный слой полностью заполнен (это состояние соответствует достижению ККМ), в системе начинается ассоциация углеводородных радикалов молекул ПАВ. В результате ассоциации образуются мицеллы, внутренняя часть которых, так называемо е ядро, состоит из плотно упакованных, объединившихся радикалов, практически это жидкий углеводород. Поляр ные группы молекул ПАВ ориентированы в воду. Они образуют гидрофильную оболочку, которая изолирует ядро мицеллы от воды (рис. 7.2). Гидрофильность оболочек мицелл придает образовавшейся гетерогенной системе лиофильность, а, значит, и термодинамическую устойчивость.

При дальнейшем росте концентраций ПАВ (выше ККМ) количество необъединенных в мицеллы мо лекул или ионов ПАВ в поверхностном слое остается постоянным, но увеличивается количество мицелл.

Движущей силой образования мицелл являются гидрофобные взаимодействия. Энтальпия взаимодействий углеводородных радикалов ПАВ друг с другом меньше энтальпии взаимодействия их с водой. Для системы термодинамически выгоднее состояние с минимумом энтальпии, поэтому радикалы выталкиваются из водной среды в ядра мицелл, чтобы избежать, насколько это возможно, контакта с водой. В результате этого энтальпия уменьшается.

Когда молекулы или ионы ПАВ находятся в неассоциированном состоянии, вокруг их углеводородных радикалов из молекул воды образуются льдоподобные упорядоченные структуры. Переход радикалов ПАВ из воды в мицеллы разупорядочивает структуру воды, вследствие чего повышается энтропия системы.

Уменьшение энтальпии и увеличение энтропии приводит к снижению энергии Гиббса системы:

G = H TS < 0.

Для процесса мицеллообразования уменьшение энергии Гиббса вс ледствие указанных изменений термодинамических параметров составляет пример - но 2600 Дж/мо ль на каждую –CH2– группу углеводородных радикалов. Поэтому процесс образования мицелл термодинамически выгоден и идет самопроизвольно.

Термодинамическая выгодность мицеллообразования в растворах коллоидных ПАВ обусловлена также еще и тем, что гидрофильность образующейся оболочки обеспечивает минимальное межфазное натяжение на границе мицелла—вода. Сравнительно небольшая поверхностная энергия системы компенсируется энтропийным фактором, вызывающим равномерное распределение мицелл в дисперсионной среде.

Процесс мицеллообразования обратим: при разбавлении до концентраций меньших ККМ мицеллы распадаются на ионы или молекулы (их назыв ют мономерами в отличие от мицелл) и дисперсная ультрамикрогетерогенная система переходит в молекулярный истинный раствор. Это говорит о том, что мицеллы находятся в термодинамическом равновесии с мономерами ПАВ.

Таким образом, мицеллярные системы в раствор ах коллидных ПАВ являются достаточно редким примером самопроизвольно образующихся термодинамически устойчивых лиофильных гетерогенных систем — равновесных систем с минимумом энергии Гиббса, несмотря на имеющуюся у них огромную межфазную поверхность.