Ақпараттық -дидакти калық блок

Көптеген гендік мутациялар зиянды болып табылады. Табиғат антимутациялық кедергілерді қалыптастырды. Антимутациялық кедергілер гендік мутациялардың зиянды салдарларын тежеп отырады.

Молекулалық деңгейдегі антимутациялық кедергілерге жатады:

1) рецессивті гендік мутациялардың фенотипте жарыққа шығуын тежеп отыратын гомологты хромосомалардың жұптығы; 2) ДНҚ молекуласының қос тізбекті болуы (қосымша тізбек); 3) ДНҚ молекуласында бір геннің (рРНК, тРНК, гистонды ақуыздарды синтездейтін гендер т.б.) көшірмелерінің бірнеше рет қайталануы; 4) генетикалық кодтың артықтылық қасиеті (25% нуклеотидтердің алмасуы синонимдік кодондарды береді); 5) кодонның триплеттілігі (биологиялық ақпараттың өзгеруіне алып келетін триплет-кодондағы өзгерістер санының минималдығы, 64% кодондағы үшінші нуклеотидтің ауысуы кодон мағынысын өзгертпейді, бірақ екінші нуклеотидтің ауысуы 100% мутацияға алып келеді); 6) а-РНҚ молекуласында терминаторлық кодон «дұрыс емес» орналасса немесе полиаделиндену қате жүрсе, ерекше кіші интерферирлеуші РНҚ арқылы белсенді түрде жойылып отырады; 7) убиквитиндер аминқышқылдық құрамында қателіктері бар полипептидтерді таңбалайды, шоперон ақуыздары фолдинг дұрыс жүрмеген полипептидтік тізбектерді таниды. Олар ары қарай лизосомаларда немесе протеосомаларда ыдырайды; 8) ДНҚ репарациясы – бұл жасушаның ДНҚ молекуласындағы зақымдалған аймақтарды ферменттер арқылы тануы, ыдыратуы және осы жерді қалыпты комплементарлы нуклеотидтермен толтыруа алу қабілеті.

ДНҚ молекуласы спонтанды немесе индуцирленген орта факторларының әсерінен үнемі химиялық өзгерістерге ұшырап отырады.

Спонтанды өзгерістерге жатады: 1) репликкция қателіктері (коплементарлы емес нуклеотидтердің түзілуі - мисмэтчтер); 2) апуриндену (азоттық негіздің қант-фосфаттық құрамынан ажырауы – АР сайттарының түзілуі); 3) дезаминдену (амин тобының азоттық негізден ажырауы); 4) метилдену (алкилирлену); 5) тотығу.

Индуцирленген зақымдануларға жатады: 1) димерлердің түзілуі (қатар орналасқан пиримидиндік негіздердің димер түзіп байланысуы); 2) пуриндік сақинаның ажырауы; 3) ДНҚ молеуласындағы бір тізбекті немесе екі тізбектік үзілулер; 4) ДНҚ тізбектерінің тігілуі т.б.

ДНҚ репарациясы генетикалық материалдағы өзгерістерді-мутациялардың алдын алады. ДНҚ репарациясына 150-ден астам ферменттер қатысады.

Қазіргі уақытта репарацияның көптеген реакциялары сипатталған. Кейбіреулері қарапайым түрде және мутагендер әсер еткеннен кейін бірден іске асады. Келесі түрлері, жаңа ферменттердің синтезін қажет етеді, сондықтан уақыты бойынша ұзағырақ. Ал кейбір түрлері жасуша қайтадан бөлінуге көшкенге дейін іске асады. Ал келесі бір түрлері жасуша бөлінуді аяқтағаннан кейін де іске асады (мұнда геномдағы кейбір өзгерістер сақталып, репарацияланбай қалады). Жасуша өз тіршілігін жаңа мутацияларды енгізу арқылы «сақтауға тырысатын» ерекше таңқаларлық реакциялар да бар.

Фотореактивация ( жарықтық репарация) және басқа да тікелей репарация түрлері . 1949 неміс генетигі Альберт Кельнер ультаракүлгін (УК) сәулесімен зақымдалған, ал одан кейін көрінетін жарыққа шығарылған стрептомицеттер және пенициллалар сияқты бактериялар мен саңырауқұлақтар жасушаларында мутациялардың жиілігінің төмендейтінін, сонымен қатар, зақымдалған бірақ, қараңғыда қалдырылған жасушалармен салыстырғанда тіршілік қабілеттерінің артатыны байқаған. Кельнер жарықтың әсерінен молекулаларда қандайда бір зақымдалулар қалпына келіп, олардың кейбіреулері қалыпты жағдайға келеді деген қортынды жасайды.

1958 жылы алғаш рет фотореактивацияны іске асыратын фермент бөлініп алынды. Ол қазіргі уақытта фотолиаза деп аталады. Ультракүлгін сәулесінің әсерінен ДНҚ молекуласында көршілес орналасқан пиримидиндер арасында димерлердің түзілуіне Т=Т, Т=Ц, Ц=Ц алып келетін байланыстар пайда болуы мүмкін.

Фотореактивацияның мәні - фотолиаза ферменті пиримидиндер арасында пайда болған байланысты үзіп, ДНҚ молекуласының бастапқы құрылысын қалпына келтіреді. Жарық фотолиаза ферментін белсенді етеді, содан кейін ДНҚ молекуласындағы димерлер табылады, онымен байланысып пиримидиндік негіздер арасындағы байланыс үзіледі. Осыдан кейін фотолиаза ДНҚ молекуласынан ажырайды.

Осымен ДНҚ молекуласы құрылысының тікелей қалпына келуі аяқталады. Бұл қазіргі уақытқа дейін табылған белсендендіруші факторы химиялық энергия емес жарық болып табылатын жаңғыз ферменттік реакция. Репарацияның барлық басқа типтерінде жарық энергиясын қажет етпейді.

ДНҚ молекуласын тікелей қалпына келтірудің басқа түрлері:

О6-алкилирленген гуаниннің репарациясы. 1944-1948 жылдары совет генетигі И.А. Рапопорт молекулаларға алкильдік (метилдік, этилдік, пропилдік, бутилдік) жанама топтарды қосу қабілетіне ие, жаңа химиялық мутагендер классын – алкилирлеуші агенттерді ашты. Бұл мутагендер ДНҚ молекуласындағы пуриндік және пиримидиндік негіздерді алкилирлейді.

Зерттеулер жасушада метилтрансфераза ферментінің модифицирленген гуаниннен метил топтарын алып тастап ДНҚ құрылысының бастапқы қалпына келетіре алатындығын көрсетті.

Метилтрансфераза метил тотарын алып тастағаннан кейін өзі одан босай алмайды. Тікелей репарацияның әрбір актісіне жаңа фермент молекуласы қажет, сондықтан жасуша ол ферменттерді үнемі синтездеп отыруы керек. Егер ДНҚ молекуласында жаңа зақымдалулардың түзілуі ферменттердің синтезделуінен баяу жүретін болса, онда барлық гуаниндегі метил топтарын алып тастауға, мутацияның пайда болмауына жеткілікті. Ал егерде, жаңа өзерістердің пайда болуы фермент синтезінен жоғары болса, ферменттер барлық өзгерістерді түзетіп үлгермейді де ол өзгерістер жасушада мутацияның жинақталуына алып келеді.

ДНҚ бір тізбекті үзілулерінің репарациясы. Тікелей репарацияның тағы бір типі индуцирленген факторлар арқылы, мысалы иондық сәулелену әсерінен ДНҚ молекуласының бір тізбекті үзілулерінде анықталған. Бұл жағдайда ДНҚ полинуклеотидлигаза (ағыл. ligase - байланыстыру, қосу) ферменті арқылы үзілген ДНҚ молекуласы қалпына келеді.

Пуриндерді тікелей қою арқылы АП-сайтттардың репарациясы. 1979 жылы голландық ғалым Т. Линдал пуриндік негіздердің кейбір зақымдаулары кезінде негіздер мен қанттың арасындағы байланыстардың (гликозиттік) үзіліп кететуі мүмкін екендігін анықтады. ДНҚ молекуласында, осы негіздердің орнында АП-сайттар деп аталатын бос қуыстар пайда болады. Инсертаза (ағыл. insert - қою) ферменттері бос қуысқа керекті, зақымдалғанға дейінгі негіздерді қойып, оны қантпен байланыстыра алады. ДНҚ молекуласы бастапқы қалпына келеді.

Эксцизиялық репарация (қараңғылық репарация). ДНҚ зақымдалуларының қалпына келуінің күрделі, хирургиялық отаны еске түсіретін түрлері де бар. Зақымдалған жер ДНҚ тізбегінен кесіліп алынып (ағыл. excision – кеудеген мағына береді, осыдан «эксцизиялық репарация» термині шыққан), бос қалған жер зақымдалмаған материалмен толтырылады.

Негіздердің эксцизиялық репарациясы (base excision repair–BER) зақымдалған негіздер гликозилазалар арқылы кесіліп АП сайттары толтырылады. Гликозилазалар оларға байланысып, модифицирленген негіздер мен қант дезоксирибоза арасындағы гликозиттік байланысты үзеді, нәтижесінде АП-сайттары пайда болады. АП-сайттар енді басқа ферментпен АП-эндонуклеазалармен танылады. ДНҚ тізбегінде үзілулер пайда болған сәтте келесі фосфодиэстераза ферменті іске кіріседі. Ол ДНҚ тізбегінен негізбен байланыспай қалған қантфосфаттық топты ыдыратады. ДНҚ бір тізбегінде бір нуклеотидтің орнына сәйкес қуыс пайда болады. Қуысқа қарам-қарсы ДНҚ тізбегіндегі нуклеотид зақымдалмаған. Келесі фермент ДНҚ полимераза І бос 3'ОН ұшына сәйкес нуклеотидті жалғайды. Екі бос ұштарын (қойылған нуклеотидттің 3'ОН-ұшын және ДНҚ тізбектерін бастапқыда АП-эндонуклеазамен үзгенде түзілген 5' үшын) қосу полинуклеотидлигаза арқылы іске асады. Енді ДНҚ құрылысы толығымен қалпына келтірілді: дұрыс емес негіз алынды, осы негіз байланысып түрған қантфосфаттық топ ДНҚ тізбегінен кесілді, қуыс дұрыс нуклеоитдпен толтырылды және барлық біртізбекті үзілулер қалпына келтірілді.