Структурные компоненты и химический состав хромосом

6.4.5. Хроматин, эу- және гетерохроматин, сипаттамасы.

6.4.6. Медицинадағы жасуша құрылымның өзгеруінің маңызы.

 

 

Ақпаратты-дидактикалық блок:

Генетикалық аппаратының орналасуы бойынша жасушаларды екі негізгі типке ажыратады: прокариотты және эукариотты. Прокариоттар жасушаларында ДНҚ молекуласы бактериалық хромосоманың негізін құрайды. Бактериалық хромосомасы орналасқан жасуша бөлігі нуклеоид деп аталады. Эукариоттық жасушаларда генетикалық материалының ДНҚ-ның негізі ядрода сызықты хромосома құрамында, ал ДНҚ-ның аздаған бөлігі ядродан тыс орналасқан. Цитоплазмада ораласқан тұқым қуалайтын материал жасушалардың органоидтарында – митохондрия мен пластидтерде орналасқан және өзін-өзі екі еселей алады. Олар сақиналы ДНҚ түрінде болады. Цитоплазмалық тұқымқуалаушылық ядролық ДНҚ бақылауында болады және анасы арқылы біржақты тұқым қуалау ерекшелігі тән. Белгілер жұмыртқа жасушасының цитоплазмасы арқылы беріліп отырады.

19-ғасырдың 80-жылдары эукариоттық жасушалардың ядросынан жіп тәрізді құрылымдар-хромосомалар табылды. Хромосоманың негізгі қызметі тұқым қуалау ақпаратын сақтау және ұрпақтан-ұрпаққа жеткізу.

Хромосоманы құрайтын материал хроматин деп аталады. Хроматин құрамына кіреді:

а) жалпы хроматин құрамының, 40% жуығы ДНҚ молекуласы;

б) 60% жуығы ақуыздар. Хроматин құрамындағы ақуыздар гистонды және гистонды емес деп бөлінеді.

Гистонды белоктар хроматин құрамына кіретін белоктардың 40%-дан 80%-ға дейінгі мөлшерін құрайды.

Гистондар күшті негіздік ақуыздар. Гистондарды 5 топқа бөлуге болады: H1, H2A, H2B, H3, H4. Гистондар хромосомада ДНҚ молекуласын орап, жинақтайтын, арнайы құрылымдық қызмет атқарады және сонымен қатар, транскрипцияның реттелуінде де маңызды рөл атқарады. Транскрипция жүру үшін хромосоманың белгілі аймақтарында ДНҚ деконденсациясы жүруі қажет. Гистонды ақуыздар ДНҚ молекуласынан ажырайды.

Гистонды емес ақуыздар салыстармалы түрде молекулалық салмағы төмен, қышқылдық протеиндер. Гистонды емес ақуыздар құрамына көптеген ядролық, құрылымдық ақуыздар, ферменттер және ДНҚ-ның белгілі аймақтарымен байланысып, гендер экспрессиясына және басқа да үрдістердің реттелуіне қатысатын транскрипциялық факторлар да кіреді.

Хроматин РНҚ-сы ДНҚ-ның 0,2 ден 0,5% құрайды. Хромосомалар құрамынан металл иондарын табуға болады: Mg++, Ca++ және Fe++. Олар хромосома құрылымының ұйымдасуын қамтамасыз етеді. Аталған химиялық қосылыстардың хромосомада орналасуы және жинақталуы әлі толығымен анықталмаған.

Митоздық хромосоманың морфологиясын зерттеуге ең қолайлы сәт олардың қатты конденсацияланған күйде, митоздың метафазасында немесе анафазаның басында. Хромосомалар жуан, таяқша тәрізді, түрлі ұзындықтағы күйде болады. Хромосомаларды екі иыққа бөлетін біріншілік тартылысты көпшілік хромосомадан табуға болады.

Біріншілік тартылыс аймағында кинетохор орналасқан центромера болады. Оған митоз кезінде бөліну ұршығының микротүтікше жіпшесі бекініп, центроилдерге бағытталып орналасады. Микротүтікшелер өсінділері митоз кезінде хромосомалардың жасуша полюстеріне жылжуын қамтамасыз етеді. Кейбір хромосомаларда екінші тартылыстары болады. Бұл тартылыстар әдетте, хромосоманың дисталды ұшына жақын орналасып, спутник деп аталатын кішкене аймаққа бөледі. Сонымен қатар, екіншілік тартылыстар осы аймақтарда интерфазада ядрошықтар түзілетіндіктен ядрошықтық ұйымдастырушылар деп те аталады. Осы жерде ДНҚ орналасқан. Хромосома иықтарының шеткі бөлігі - теломермен аяқталады. Хромосоманың теломерлік ұштары басқа хромосомалармен немесе оның үзінділерімен байланысуға қабілетті емес.

Центромераның орналасуына қарай хромосоманың 5 типін ажыратады:

1. Метацентр лік-иықтарының ұзындықтары бірдей.

2. Субметацент лік-иықтарының ұзындықтары теңдей емес.

3. Акроцентр лік-бір иығы ұзын, екіншісі өте қысқа.

4. Спутни ктік – хромосоманы бөліп түратын спутник деп аталатын екінші тартылыстары бар.

5. Телоцентр лік – центромерасы иығының ұшында орналасқан, бір иықты хромосома.

Қалыпты адам жасушасында телоцентрлік хромосома кездеспейді.

Хромосомалар жасушада екі түрлі құрылымдық-функционалдық жағдайда болуы мүмкін:

а) генетикалық белсенді жағдайы, хромосомалардың жартылай немесе толық тарқатылуы репликация және гендердің транскрипциясы процестерінің жүруі (бұл интерфазалық хромосома);

ә) генетикалық белсенді емес жағдайы, хромосомалардың өте жиі ширатылып тығыздалуы, метаболизмдік тыныштық күйге ауысуы және митоздық бөліну жүріп генетикалық материалдың жаңадан түзілген жасушаларға тасымалданып, бөлініп берілуімен сипатталады (митоз).

Митоздық хромосомалардың құрылымының ұйымдасуы туралы заманауи білім деңгейлеріне сай ұйымдасу деңгейлері (сызба түрінде):

1. ДНҚ-ның бірінші тығыздалу деңгейі – нуклеосомлық фибрилла, жуандығы 10нм, оны 146 жұп нуклеотидттен тұратын ДНҚ орайды; тығыздалу коэффициенті – 6-7;

2. Екінші деңгей – 30-нанометрлік фибрилла-соленоид (нуклеомера); тығыздалу коэффициенті – 40 ;

3. Үшінші деңгей – ілмекті домен (хромомера); 60 мың жұп нуклеотид, ұзындығы 0,2-0,3 мкм; тығыздалу коэффициенті – 680;

4. Төртінші деңгей – хромонемдік; жуан жіп (0,1-0,2 мкм) түзетін хромомерлердің тығыздалуы, жарық микроскопы арқылы көруге болады, тығыздалу коэффициенті– 12х104. 2-сурет.

5. Хроматидалық және хромосомалық деңгей жарық микроскопы астында анық көрінетін хроматин құрылымының жоғары деңгейі болып табылады.

Әр нуклеосома гистонды Н2А, Н2В, Н3,Н4 ақуыздарының екі молекуласынан құралған октомерге байланысқан 200 жұп нуклеотидтті ДНҚ –дан тұрады. Бұл негіздік гистондар. Нуклеосома пішіні цилиндр тәрізді, оның сыртын ДНҚ екі орам жасап орайды. Екі нуклеосома арсындағы ДНҚ кесіндісі линкер деп аталады. ДНҚ нуклеосомалық құрылым арқылы тығыздалу нәтижесінде фибрилла 6 есе қысқарады. Хроматин бұл сатыда «моншаққа» ұқсайды.

Нуклеосомалық жіпшенің ары қарай тығыздалуы гистонды H1 ақуызы арқылы қамтамасыз етіледі. Ол ДНҚ-ның линкерлік бөлігімен және екі көрші ақуыздық денешікпен байланысып, аларды бір-біріне жақындастырып, тартып нуклеосомалық фибрилланы спиалдап орайды. Нәтижесінде соленоид типті 6-8 нуклеосомадан тұратын компактілі құрылым түзіледі. Мұндай нуклеомерлі фибрилланың диаметрі 20-30 нм, ұзындығы 1,2 мм. Хроматиннің нуклеомерлік деңгейі ДНҚ –ның 40 есе тығыздалуын қамтамасыз етеді. Нуклеосомалық және нуклеомерлік ДНҚ хроматиннің тығыздалу деңгейлеріне гистонды ақуыздар қатысады.

Гистондардың арнайы қалдықтарында түрлі модификациялар болады: метилдену, фосфорлану, ацетилдену. Гистондардың модификациясы ағзадағы гендердің бір ұрпақтан келесі ұрпаққа дейін қызмет атқаруының бақылануын қамтамасыз етеді. Гистондар модификациясының динамикасын сараптау саласы метилдену, фосфорлану және ацетилдену арасында үлкен кинетикалық айырмашылықты көрсетті. Бұл модификациялардың эпигенетикалық тұқым қуалауда, адамның тұқым қуалайтын ауруларында рөлдерінің түрлі екендігін дәлелдейді. Гистондардың ацетилденуіндегі және метилденуіндегі өзгерістер рактың дамуына алып келеді. Қартайған кезде метилденуден үлкен көлемді өзгерістер болады.

Келесі, жоғарғы деңгейдегі хроматиннің тығыздалуы гистонды емес ақуыздардың қатысуымен іске асады.

Генетикалық материалдың тығыздалуының келесі деңгейінде хроматиндік фибрилла ілмектер түзеді. Соленоидтық фибрилла жинақталып, түрлі ұзындықтағы домендер түзеді. Жалпы тығыздалу деңгейі 1000 дейін жетеді. Мұндай құрылымдардың диаметрі орташа алғанда 300 нм құрайды. Бұл құрылым көбіне, интерфазалық хромосомаларға тән.

Хроматиннің ары қарай тығыздалуы хромонемдік деңгейдің түзілуіне әкеледі. Хромонема немесе хроматиндік жіпше құрылымның орташа жуандығы 0,1-0,2 мкм. Хромонема табиғи жағдайда митоздың профаза сатысының басында хромосомалардың конденцасиясы кезінде және телефаза сатысында декондесациясында байқалады.

Тығыздалудың соңғы деңгейі (7000 есе) метафазалық хромосомаларға тән; оның диаметрі 1400 нм тең.

Хроматидік және хромосомалық деңдейлерде хроматиннің ұйымдасу құрылымдарын жарықтық микроскоппен көруге болады.

Интерфазалық хромосомалардың түрлі аймақтарының тығыздалуының біркелкі болмауының үлкен функционалдық маңызы бар. Хроматиннің жағдайына байланысты бөлінбей тұрған жасушаларда тығыздығы төмен, транскрипцияға қабілетті эухроматиндік және генетикалық инертті, биологиялық ақпараттың транскрипциясы жүрмейтін, тығыздығы жоғары гетерохроматиндік аймақты ажыратады.

Гетерохроматин конститу ти в ті ( құрылымдық ) және факультатив ті деп ажыратылады.

Конститутив тік гетерохроматин барлық хромосомалардың центромера және теломера аймағында болады. Ол транскрипияланбайтын, орташа және жиі қайталынатын нуклеотидтер қатарынан тұратын, ДНҚ –дан құралған. Олар ядроның жалпы құрылымын сақтау, хроматиндердің ядро қабықшасына бекінуін, мейоз кезінде гомологты хромосомалардың өзара бірін-бірі тануын, көрші құрылымдық гендерді бөліп тұру, гендердің белсенділігінің реттелуі қызметтерін атқаруы мүмкін.

Факультативті гетерохроматин мысалы ретінде қалыпты гомогаметалы жынысты ағзалардың (адамдарда әйел жынысы гомогаметалы болады) екі Х-жыныс хромосомасының біреуі ядро мембранасында интерфаза сатысындағы Барр денешігін, жыныс хроматинін келтіруге болады.

Адам жасушаларындағы Х-хроматин санын анықтау жыныс хромосомасының санының өзгеруінен болатын тұқым қуалайтын аурудардың бастапқы диагнозын қоюға мүмкіндік береді.

Медицинада митоздық хромосомалардың молекулалық-генетикалық негіздерін оқып-үйрену адамның хромосоманың құрылыс мен қызметінің бұзылуынан болатын хромосомалық ауруларының себептерін түсіну үшін аса маңызды.

Алып политенді хромосомаларды зерттеу қызмет атқаратын хромосомалардың нәзік құрылымы туралы маңызды ақпарат береді. (poly- және лат. taenia – жіп, таспа).

Политения дегеніміз хромосоманың нәзік құрылымының хромонемнің сандарының көптеп 1000-ға дейін жетуі немесе одан да көп артуы, бірақ хромосома санында өзгерістің болмауынан хромосомалар алып көлемге ие болады.

Алып хромосомаларды дрозофила шыбынының дернәсілінің сілекей безінен байқауға болады.

Генетикалық әдістер арқылы алып хромосомаларды зерттеу нәтижесінде анықталған жеке гендерді, алып хромосомалардың белгілі аймақтарымен байсаныстыруға мүмкіндік туды. Хроматиннің тығыздалған жерлері диск деп аталатын құрылымды құрайды, ал олардың арасында деконденсацияланған диск аралық бөлігінде хроматин орналасқан. Әрбір дискте, көлеміне қарай хромомерлер саны әртүрлі болады. Хромомерлер — мейоздық хромосомаларда профазада, сонымен қатар интерфаза сатысында сомалық жасушалардың политенді хромосомаларында жақсы көрінетін, күңгірт түске боялғанған түйіндерден түратын құрылымдар.

Политенді хромосомалар құрылымы бойынша ғана қызығушылық туғызбайды, сондай-ақ қызымет етуі де маңызды. Гендердің транскрипциясы кезінде хроматин деконденсацияланып, пуфтар қалыптастырады. Онтогенездің түрлі сатыларында дискілерде арнайы осы кезеңге тән гендер белсенді болады. Осы гендер орналасқан хроматин дискілері «тарқатыла» бастағанда транскрипция жүреді.

* Ағылшын және орыс тілдерінде талдау үшін

6.5. Оқыту әдістері: студенттердің сабақтың мәнін, мақсатын және міндеттерін; түсінгенін қысқа, анық, ойын жүйелі жеткізу және түсінген материалын сызба нұсқа, кесте, сурет түрінде көрсету; тест қателіктерімен топпен жұмыс; есептер шығаруды көрсету және түсіндіру, сызбалар толтыруға бағыттай отырып ауызша сұрау; тақырып бойынша бейнефильмдер көру.

6.6. Әдебиеттер:

Негізгі:

6.6.1.Аманжолова Л.Е. Жалпы және медициналық генетиканың биологиялық негіздері. А.,

2006, б. 65-77.